Ecoparcovka.ru

ЭкоПарковка СТО
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Ядерный двигатель для космоса что это

Ядерный ракетный двигатель строят для полетов на Марс. Чем он опасен?

NASA разработает ядерный двигатель для быстрого полета на Марс. Ракеты с ядерными двигателями будут более мощными и вдвое более эффективными, чем с химическими, которые используются сегодня. Рассказываем подробнее о разработке, как быстро она будет передвигаться и чем опасна.

Читайте «Хайтек» в

Что такое ядерный ракетный двигатель?

Ядерный ракетный двигатель (ЯРД) — разновидность ракетного двигателя, которая использует энергию деления или синтеза ядер для создания реактивной тяги.

Традиционный ЯРД в целом представляет собой конструкцию из нагревательной камеры с ядерным реактором как источником тепла, системы подачи рабочего тела и сопла. Рабочее тело (как правило — водород) подается из бака в активную зону реактора, где, проходя через нагретые реакцией ядерного распада каналы, разогревается до высоких температур и затем выбрасывается через сопло, создавая реактивную тягу.

Существуют различные конструкции ЯРД: твердофазный, жидкофазный и газофазный — соответствующие агрегатному состоянию ядерного топлива в активной зоне реактора — твердое, расплав или высокотемпературный газ (либо даже плазма).

Твердофазный ядерный ракетный двигатель

В твердофазных ЯРД (ТфЯРД) делящееся вещество, как и в обычных ядерных реакторах, размещено в сборках-стержнях (ТВЭЛах) сложной формы с развитой поверхностью, что позволяет эффективно нагревать газообразное рабочее тело (обычно — водород, реже — аммиак), одновременно являющееся теплоносителем, охлаждающим элементы конструкции и сами сборки.

Температура нагрева ограничена температурой плавления элементов конструкции (не более 3000 К). Удельный импульс твердофазного ЯРД, по современным оценкам, составит 850–900 с, что более чем вдвое превышает показатели наиболее совершенных химических ракетных двигателей.

Наземные демонстраторы технологий ТфЯРД в ХХ веке были созданы и успешно испытаны на стендах (программа NERVA в США, РД-0410 в СССР).

Газофазный ядерный ракетный двигатель

Газофазный ядерный реактивный двигатель (ГЯРД) — концептуальный тип реактивного двигателя, в котором реактивная сила создаётся за счёт выброса теплоносителя (рабочего тела) из ядерного реактора, топливо в котором находится в газообразной форме или в виде плазмы. Считается, что в подобных двигателях удельный импульс составит 30–50 тыс. м/с.

Перенос тепла от топлива к теплоносителю достигается в основном за счет излучения, большей частью в ультрафиолетовой области спектра (при температурах топлива около 25 000 °C).

Ядерный импульсный двигатель

Атомные заряды мощностью примерно в килотонну на этапе взлета должны взрываться со скоростью один заряд в секунду. Ударная волна — расширяющееся плазменное облако — должна была приниматься «толкателем» — мощным металлическим диском с теплозащитным покрытием и потом, отразившись от него, создать реактивную тягу.

Импульс, принятый плитой толкателя, через элементы конструкции должен передаваться кораблю. Затем, когда высота и скорость вырастут, частоту взрывов можно будет уменьшить. При взлете корабль должен лететь строго вертикально, чтобы минимизировать площадь радиоактивного загрязнения атмосферы.

В США космические разработки с использованием импульсных ядерных ракетных двигателей осуществлялись с 1958 по 1965 год в рамках проекта «Орион» компанией «Дженерал Атомикс» по заказу ВВС США.

По проекту «Орион» проводились не только расчеты, но и натурные испытания. Летные испытания моделей летательного аппарата с импульсным приводом (для взрывов использовалась обычная химическая взрывчатка).

Были получены положительные результаты о принципиальной возможности управляемого полёта аппарата с импульсным двигателем. Также для исследования прочности тяговой плиты проведены испытания на атолле Эниветок.

Во время ядерных испытаний на этом атолле покрытые графитом стальные сферы были размещены в 9 м от эпицентра взрыва. Сферы после взрыва найдены неповрежденными, тонкий слой графита испарился (аблировал) с их поверхностей.

В СССР аналогичный проект разрабатывался в 1950–1970-х годах. Устройство содержало дополнительные химические реактивные двигатели, выводящие его на 30–40 км от поверхности Земли. Затем предполагалось включать основной ядерно-импульсный двигатель.

Основной проблемой была прочность экрана-толкателя, который не выдерживал огромных тепловых нагрузок от близких ядерных взрывов. Вместе с тем были предложены несколько технических решений, позволяющих разработать конструкцию плиты-толкателя с достаточным ресурсом. Проект не был завершен. Реальных испытаний импульсного ЯРД с подрывом ядерных устройств не проводилось.

Ядерная электродвигательная установка

Ядерная электродвигательная установка (ЯЭДУ) используется для выработки электроэнергии, которая, в свою очередь, используется для работы электрического ракетного двигателя.

Подобная программа в США (проект NERVA) была свернута в 1971 году, но в 2020 году американцы вновь вернулись к данной теме, заказав разработку ядерного теплового двигателя (Nuclear Thermal Propulsion, NTP) компании Gryphon Technologies для военных космических рейдеров на атомных двигателях для патрулирования окололунного и околоземного пространства, также с 2015 года идут работы по проекту Kilopower.

С 2010 года в России начались работы над проектом ядерной электродвигательной установки мегаваттного класса для космических транспортных систем (космический буксир «Нуклон»). На 2021 год ведется отработка макета; к 2025 году планируется создать опытные образцы данной ядерной энергоустановки; заявлена плановая дата летных испытаний космического тягача с ЯЭДУ — 2030 год.

Мощность

По оценкам А. В. Багрова, М. А. Смирнова и С. А. Смирнова, ядерный ракетный двигатель может добраться до Плутона за 2 месяца и вернуться обратно за 4 месяца с затратой 75 тонн топлива, до Альфы Центавра за 12 лет, а до Эпсилона Эридана за 24,8 года.

Ядерный двигатель опасен?

Основным недостатком является высокая радиационная опасность двигательной установки:

  • потоки проникающей радиации (гамма-излучение, нейтроны) при ядерных реакциях;
  • вынос высокорадиоактивных соединений урана и его сплавов;
  • истечение радиоактивных газов с рабочим телом.

Использование открытия российских ученых в гражданском секторе тесно связано с безопасностью ядерной силовой установки. Нужно было обеспечить безопасность его выхлопа.

Защита малогабаритного ядерного двигателя меньше, чем у большего по размерам, поэтому нейтроны будут проникать в «камеру сгорания», тем самым с некоторой вероятностью делая радиоактивным все вокруг.

Азот и кислород имеют радиоактивные изотопы с малым временем полураспада и не опасны. Радиоактивный углерод вещь долгоживущая. Но есть и хорошие новости.

Радиоактивный углерод образуется в верхних слоях атмосферы под действием космических лучей. Но главное, концентрация углекислого газа в сухом воздухе составляет всего 0,02÷0,04%.

Учитывая же, что процент углерода, становящийся радиоактивным, величина еще на несколько порядков меньшая, предварительно можно считать, что выхлоп ядерных двигателей не более опасен, чем выхлоп ТЭЦ, работающей на угле.

Собираются ли использовать ядерный двигатель для новейших полетов в космос?

Да, в начале февраля стало известно, что NASA проведет тестирование новейшего ядерного двигателя для полетов на Марс. Ожидается, что с его помощью можно будет добраться до Красной планеты всего лишь за три месяца.

В последние годы ученые и инженеры NASA и других космических агентств мира активно обсуждают планы по постройке постоянных обитаемых баз на поверхности Луны и Марса.

  • В чем его преимущества?

Главным ключом к обеспечению их автономности и удешевлению постройки специалисты NASA считают технологии трехмерной печати, позволяющие использовать воду и местные ресурсы — почву, горные породы и газы из атмосферы — для постройки зданий базы прямо на месте.

Читать еще:  Шкода октавия какой самый удачный двигатель

Подобные принтеры, как показывают опыты на борту МКС и на Земле, позволяют напечатать почти все необходимое для жизни колонистов на Марсе, за исключением одного, самой главного компонента базы — источника питания, чья мощность была бы достаточной для обеспечения работы самого 3D-принтера, а также питания и обогрева всей базы.

В рамках подготовки NASA к высадке на Марс в 2035 г. американская компания Ultra Safe Nuclear Technologies (USNT) из Сиэтла предложила свое решение — ядерный тепловой двигатель (NTP)

  • Каким будет ядерный двигатель?

USNT предлагает классическое решение — ядерный двигатель с использованием сжиженного водорода в качестве рабочего тела: ядерный реактор вырабатывает тепло из уранового топлива, эта энергия нагревает жидкий водород, проходящий по теплоносителям, который расширяется в газ и выбрасывается через сопло двигателя, создавая тягу.

Одна из основных проблем при создании такого типа двигателей — найти урановое топливо, которое может выдерживать резкие колебания температуры внутри двигателя. В USNT утверждают, что решили эту проблему, разработав топливо, которое может работать при температурах до 2 400 градусов Цельсия.

Топливная сборка содержит карбид кремния: этот материал, используемый в слое триструктурально-изотропного покрытия, образует газонепроницаемую преграду, препятствующую утечке радиоактивных продуктов из ядерного реактора, защищая космонавтов.

Кроме того, для защиты экипажа и на случай непредвиденных ситуаций ядерный двигатель не будет использоваться во время старта с Земли — он начнет работу уже на орбите, чтобы минимизировать возможные повреждения в случае аварии или нештатной работы.

Содержание

Атомные заряды мощностью примерно в килотонну на этапе взлёта должны были взрываться со скоростью один заряд в секунду. Ударная волна — расширяющееся плазменное облако — должна была приниматься «толкателем» — мощным металлическим диском с теплозащитным покрытием, и, потом, отразившись от него, создать реактивную тягу. Импульс, принятый плитой толкателя, через элементы конструкции передавался кораблю. Затем, когда высота и скорость вырастут, частоту взрывов можно было уменьшить. При взлёте корабль должен был лететь строго вертикально, чтобы минимизировать площадь радиоактивного загрязнения атмосферы.

В США были проведены несколько испытаний модели летательного аппарата с импульсным приводом (для взрывов использовалась обычная химическая взрывчатка). Получены положительные результаты о принципиальной возможности управляемого полёта аппарата с импульсным двигателем.

Реальных испытаний импульсного ЯРД с подрывом ядерных устройств не проводилось. Дальнейшие практические разработки в области импульсных ЯРД были прекращены в конце 1960-х гг.

Ядерный двигатель для космоса что это

Ракетные двигатели на жидком топливе дали человеку возможность выйти в космос — на околоземные орбиты. Однако подобные ракеты сжигают 99% топлива за первые несколько минут полёта. Остатка топлива может не хватить для путешествия на другие планеты, да и скорость будет настолько малой, что вояж займёт десятки или сотни лет. Решить проблему могут ядерные двигатели. Как? Будем разбираться вместе.

Эта статья была опубликована в журнале OYLA №4(20). Оформить подписку на печатную и онлайн-версию можно здесь.

Принцип работы реактивного двигателя очень прост: он переводит топливо в кинетическую энергию струи (закон сохранения энергии), за счёт направления этой струи ракета движется в пространстве (закон сохранения импульса). Важно понимать, что мы не можем разогнать ракету или самолёт до скорости большей, чем скорость истечения топлива — раскалённого газа, выбрасываемого назад.

Космический аппарат New Horizons

Что же отличает эффективный двигатель от неудачного или устаревшего аналога? Прежде всего то, сколько топлива потребуется двигателю, чтобы разогнать ракету до нужной скорости. Этот важнейший параметр ракетного двигателя называется удельный импульс, который определяется как отношение общего импульса к расходу топлива: чем больше этот показатель, тем эффективнее ракетный двигатель. Если ракета практически целиком состоит из топлива (это означает, что в ней нет места для полезного груза, предельный случай), удельный импульс можно считать равным скорости истечения топлива (рабочего тела) из ракетного сопла. Запуск ракеты — крайне дорогостоящее мероприятие, учитывается каждый грамм не только полезного груза, но и топлива, которое тоже весит и занимает место. Поэтому инженеры подбирают всё более и более активное горючее, единица которой давала бы максимальную отдачу, увеличивая удельный импульс.

Подавляющее большинство ракет в истории и современности было оборудовано двигателями, использующими химическую реакцию горения (окисления) топлива.

Они позволили достичь Луны, Венеры, Марса и даже планет дальнего пояса — Юпитера, Сатурна и Нептуна. Правда, космические экспедиции заняли месяцы и годы (автоматические станции Pioneer, Voyager, New Horizons и др.). Необходимо отметить, что все подобные ракеты расходуют значительную часть топлива для отрыва от Земли, и далее продолжают полёт по инерции с редкими моментами включения двигателя.

Космический аппарат Pioneer

Подобные двигатели подходят для вывода ракет на околоземную орбиту, но, чтобы её разогнать хотя бы до четверти скорости света, понадобится невероятное количество топлива (расчёты показывают, что нужно 103200 грамм топлива, при том, что масса нашей Галактики не более 1056 грамма). Очевидно, что для достижения ближайших планет, а тем более звёзд, нам необходимы достаточно большие скорости, обеспечить которые жидкотопливные ракеты не в состоянии.

Дальний космос — дело совсем другое. Взять хотя бы Марс, «обжитый» фантастами вдоль и поперёк: он хорошо изучен и научно перспективен, а самое главное — близок как никто другой. Дело — за «космическим автобусом», который сможет доставить туда экипаж за разумное время, то есть, как можно быстрее. Но с межпланетным транспортом есть проблемы. Его сложно разогнать до нужной скорости, сохранив при этом приемлемые размеры и потратив разумное количество топлива.

RS-25 (Rocket System 25) — жидкостный ракетный двигатель компании Рокетдайн, США. Применялся на планере космической транспортной системы «Space Shuttle», на каждом из которых было установлено три таких двигателя. Более известен как двигатель SSME (англ. Space Shuttle Main Engine — главный двигатель космического челнока). Основными компонентами топлива являются жидкий кислород (окислитель) и водород (горючее). RS-25 использует схему закрытого цикла (с дожиганием генераторного газа).

Решением может быть «мирный атом», толкающий космические корабли. О создании лёгкого и компактного устройства, способного вывести на орбиту хотя бы самого себя, инженеры задумались ещё в конце 50‑х годов прошлого века. Главное отличие ядерных двигателей от ракет с двигателями внутреннего сгорания в том, что кинетическая энергия получается не за счёт сгорания топлива, а за счёт тепловой энергии распада радио­активных элементов. Давайте сравним эти подходы.

Из жидкостных двигателей выходит раскалённый «коктейль» выхлопных газов (закон сохранения импульса), образующихся при реакции топлива и окислителя (закон сохранения энергии). В большинстве случаев это комбинация кислорода и водорода (результат горения водорода — обычная вода). H2O обладает гораздо большей молярной массой, чем водород или гелий, поэтому её труднее разогнать, удельный импульс для подобного двигателя 4 500 м/с.

Читать еще:  Промывка двигателя — стоит ли ее проводить?

Наземные испытания NASA новой системы запуска космических ракет, 2016 год (штат Юта, США). Эти двигатели будут установлены на космический корабль Orion, на котором планируется миссия на Марс.

В ядерных двигателях предлагается использовать только водород и разгонять (разогревать) его за счёт энергии ядерного распада. Тем самым идёт экономия на окислителе (кислороде), что уже замечательно, но не всё. Так как у водорода относительно малая удельная масса, нам проще его разогнать до более высоких скоростей. Конечно, можно использовать и другие тепловосприимчивые газы (гелий, аргон, аммиак и метан), но все они не менее чем в два раза проигрывают водороду в самом главном — достижимом удельном импульсе (более 8 км/c).

Так стоит ли его терять? Выигрыш настолько велик, что инженеров не останавливает ни сложность конструкции и управления реактором, ни его большой вес, ни даже радиационная опасность. Тем более никто и не собирается стартовать с поверхности Земли — сборка таких кораблей будет вестись на орбите.

Как работает ядерный двигатель? Реак­тор в космическом двигателе намного меньше и компактнее своих наземных аналогов, но все основные компоненты и механизмы управления принципиально те же. Реактор выступает в роли нагревателя, в который подаётся жидкий водород. Температуры в активной зоне достигают (и могут превышать) 3000 градусов. Затем разогретый газ выпускают через сопло.

Однако такие реакторы испускают вредные радиационные излучения. Для защиты экипажа и многочисленного электронного оборудования от радиации нужны основательные меры. Поэтому проекты межпланетных кораблей с атомным движком часто напоминают зонтик: двигатель располагается в экранированном отдельном блоке, соединённом с основным модулем длинной фермой или трубой.

«Камерой сгорания» ядерного двигателя служит активная зона реактора, в которой подаваемый под большим давлением водород нагревается до 3000 и более градусов. Этот предел определяется только жаропрочностью материалов реактора и свойствами топлива, хотя повышение температуры увеличивает удельный импульс.

Тепловыделяющие элементы — это жаропрочные ребристые (для повышения площади теплоотдачи) цилиндры-«стаканы», заполненные урановыми таблетками. Они «омываются» потоком газа, играющего роль и рабочего тела, и охладителя реактора. Вся конструкция изолирована бериллиевыми экранами-отражателями, не выпускающими опасное радиационное излучение наружу. Для управления выделением тепла рядом с экранами расположены специальные поворотные барабаны

Существует ряд перспективных конструкций ядерных ракетных двигателей, реализация которых ждёт своего часа. Ведь в основном они будут применяться в межпланетных путешествиях, которые, судя по всему, уже не за горами.

Эти проекты были заморожены по разным причинам — недостаток денег, сложность конструкции или даже необходимость сборки и установки в открытом космосе.

«ОРИОН» (США, 1950–1960)

Проект пилотируемого ядерно-импульсного космического корабля («взрыволёт») для исследования межпланетного и межзвёздного ­пространства.

Принцип работы. Из двигателя корабля, в направлении противоположном полёту, выбрасывается ядерный заряд небольшого эквивалента и подрывается на сравнительно малой дистанции от корабля (до 100 м). Ударная сила отражается от массивной отражающей плиты в хвосте корабля, «толкая» его вперёд.

«ПРОМЕТЕЙ» (США, 2002–2005)

Проект космического агентства NASA по разработке ядерного двигателя для космических аппаратов.

Принцип работы. Двигатель космического корабля должен был состоять из ионизированных частиц, создающих тягу, и компактного ядерного реактора, обеспечивающего установку энергией. Ионный двигатель создаёт тягу порядка 60 грамм, но сможет работать постоянно. В конечном счёте, корабль постепенно сможет набрать огромную скорость — 50 км/сек, затратив минимальное количество энергии.

«ПЛУТОН» (США, 1957–1964)

Проект по разработке ядерного прямоточного воздушно-реактивного двигателя.

Принцип работы. Воздух через переднюю часть транспортного средства попадает в ядерный реактор, в котором нагревается. Горячий воздух расширяется, приобретает большую скорость и высвобождается через сопло, обеспечивая необходимую тягу.

NERVA (США, 1952–1972)

(англ. Nuclear Engine for Rocket Vehicle Application) — совместная программа Комиссии по атомной энергии США и NASA по созданию ядерного ракетного двигателя.

Принцип работы. Жидкий гидрогель подаётся в специальный отсек, в котором происходит его нагревание ядерным реактором. Горячий газ расширяется и высвобождается в сопле, создавая тягу.

Тепловая тяга на Западе

Если Россия пошла по пути создания ядерной энергодвигательной установки, то в США изучают привлекательность ядерной тепловой тяги. По мнению специалистов американского аэрокосмического агентства NASA, сегодняшние достижения в области материалов и разработки реакторов дают стимул для оценки перспективности этой технологии. Ведь ядерные двигатели на ракетах видели не только фантасты — сами специалисты NASA еще в 1961 году совместно с Комиссией по атомной энергии начали реализацию программы «Ядерный двигатель для ракетных транспортных средств» (NERVA).

Два года назад Дойс Митчелл, руководитель перспективного проекта ядерной тепловой тяги в Центре космических полетов имени Джорджа Маршалла, рассказывал, что ядерная двигательная установка способна в два раза сократить время на транзит между Марсом и Землей, и для миссии необязательно будет поджидать момент, когда обе планеты будут в наиболее благоприятных положениях друг относительно друга. Сокращение длительности полета уменьшит воздействие радиации и микрогравитации на пассажиров.

К тому же, по мнению представителей департамента энергетики США, ракеты на ядерной тепловой тяге в два раза эффективнее существующих химических ракет. Удельный импульс последней, сжигающей водород и жидкий кислород, оценивают в 450 секунд, для ядерных ракет этот показатель оценочно достигает 900 секунд.

Реконструкция

Несмотря на секретность, примерный внешний облик двигателя представить можно. Впрочем, он не изменился с 60-х годов прошлого века, когда случилась первая волна разработки ядерных самолетов – все схемы были ясны уже тогда. Они разделяются на два принципиально различных класса – с прямым нагревом воздуха в реакторе и с косвенным, когда между воздухом и реактором есть промежуточный теплоноситель и теплообменник. Вторая схема гораздо чище, так как продукты деления не попадают в воздух, но для одноразовых беспилотных аппаратов годится и первая.

Транспортно-энергетический модуль

Важной проблемой космических перелетов является необходимость постоянно затрачивать топливо для изменения скорости движения. Современные космические аппараты используют два типа двигательных систем. Классические химические реактивные двигатели позволяют быстро ускоряться, но требуют большого количества топлива и этим сильно ограничивают максимальную скорость. Поэтому двигатели включаются только для коррекции курса, а для значительного ускорения аппаратов, отправляющихся к планетам гигантам, приходится использовать уловки вроде гравитационных маневров у планет. Второй вариант — электрореактивные двигатели. Они могут быть ионными либо плазменными, однако суть одна. Такие двигатели имеют очень маленькую тягу и большое энергопотребление, однако используют относительно небольшое количество топлива. Ионные двигатели уже устанавливались на некоторых научно-исследовательских автоматических станциях, таких как Deep Space 1 или Dawn.

Электрореактивные двигатели удобны для дальних экспедиций тем, что позволяют увеличивать скорость в течение всего полета. Однако из-за малой тяги для существенного приращения скорости тяжелого аппарата потребуется установить на него много двигателей, а много двигателей потребуют много, очень много электроэнергии. Так и родилась идея транспортно-энергетического модуля — специального буксира, который мог бы стыковаться с полезным грузом и перемещать его в пространстве. Такой модуль можно использовать для транзита спутников с низкой орбиты на геостационарную, для доставки тяжелых исследовательских станций к планетам-гигантам и, наконец, для отправки пилотируемых экспедиций в дальний космос.

Читать еще:  Что такое гбц в двигателе автомобиля

Есть две концепции электрореактивного буксира. НАСА до конца 2014 года планирует определиться с архитектурой Solar Electric Propulsion (SEP). Согласно «дорожной карте» (уточненные планы) американского космического агентства, подобный модуль, использующий гигантские солнечные батареи, будет иметь мощность 50 кВт на первом этапе в начале 2020-х годов. SEP планируется использовать в качестве транспортного модуля автоматической миссии ARM по захвату и доставке на орбиту Луны астероида. Ее запуск запланирован на декабрь 2019 года. К концу 2020 должен появиться гибридный электрореактивно-химический буксир первого этапа. Его электрическая мощность составит 190 кВт (150 кВт на двигательную систему). Химические двигатели будут использоваться для торможения. Наконец, в ходе экспедиции к Марсу в 2030-х годах планируется использовать гибридный буксир второго этапа с мощностью солнечных батарей от 250 до 400 кВт и с уровнем энергоснабжения электрореактивной двигательной установки от 150 до 200 кВт. В качестве топлива ЭРДУ будут использоваться 16 тонн ксенона. Очевидным недостатком модуля на солнечных батареях является невозможность использовать его у планет-гигантов, поскольку уже на орбите Юпитера энергия солнечного излучения падает почти в 30 раз. По всей видимости, на SEP будут установлены рекордно мощные ионные двигатели наподобие NEXT. В декабре 2009 года завершились испытанния таких двигателей, в ходе которых они непрерывно работали в течение 5,5 лет.

Описание

В России с 2011 года ведется работа над ядерной электрореактивной двигательной установкой. В качестве источника энергии ЯРДУ будет использован реактор разработки Исследовательского центра им. Келдыша.

По неофициальным свидетельствам, проблемы возникли в процессе разработки «космической» части проекта и были связаны в первую очередь с отсутствием необходимой компонентной базы. Созданием двигательной системы, в которой должны быть использованы ионные двигатели ИД-ВМ с тягой 725 мН и удельным импульсом 7000 с, изначально занималась РКК «Энергия». Она же была головным разработчиком проекта на первом этапе его развития. Позднее, уже в ГКНПЦ им. Хруничева, буксир уже претерпел существенные изменения. Мощность энергоустановки была уменьшена с 1 МВт до 500 кВт (за вычетом питания собственно борта). Сам буксир уменьшился в размерах и по массе. Разработчики отказались от планов вывести его в космос отдельными пуском.

Из Центра им. Хруничева проект передали санкт-петербургскому машиностроительному заводу «Арсенал», который не имеет опыта работы с турбомашинным преобразованием энергии в реакторе. Инженеры «Арсенала» заменили турбину на термоионный преобразователь, в результате чего значительно снизилась выдаваемая полезная электрическая мощность. Фактически, сейчас аппарат не представляет интереса в качестве транспортного буксира. В таком виде он в новую Федеральную космическую программу и не попал. Теперь предполагается отрабатывать ядерный реактор в качестве источника питания для космических аппаратов на высокой орбите Земли.

Сейчас он должен выводиться в космос вместе со спутником. Аппарат будет отвечать за доставку спутника на рабочую орбиту и снабжение его энергией. И даже после такого упрощения в проекте российского транспортно-энергетического модуля осталось множество нерешенных технических проблем. Стоит отметить, что объективным недостатком ядерного буксира является маленький срок эксплуатации. Для российского буксира он, согласно техническому заданию, составляет 10 лет, однако ситуация с ресурсом ЯРДУ требует прояснения.

Замечание

Новости

Макет ядерного буксира был представлен на выставке МАКС-2013 (фото). Планируется, что наземные испытания прототипа реактора начнутся в 2018 году.

В конце июня 2014 года на конференции по случаю 60-летнего юбилея пуска Обнинской АЭС глава Научно-исследовательского и конструкторского института электротехники им. Доллежаля (НИКИЭТ) Юрий Драгунов рассказал, что его предприятие проводит испытания системы управления реактором ядерной энергодвигательной установки. По его словам, работа идет по графику. На данный момент полностью испытан регулирующий орган реактора, продолжаются испытания тепловыделяющих элементов. Ядерная электродвигательная установка должна быть готова в 2018 году.

На круглом столе «Освоение ближайших планет Солнечной системы на примере поверхности Луны» в ИТАР-ТАСС 10 октября 2014 года подтвердилось, что проектная мощность буксира снижена до 550 кВт при кампании 1 год. В первом же образце будет использоваться машинное преобразование энергии, а не термоэмиссионное.

На октябрьской (2014) конференции в НИКИЭТ им. Доллежаля было объявлено, что планируемая маневренность мощности буксира составляет 1% в секунду в диапазоне 10-100%. В 2016 году возможен запуск опытного блока на стенде.

24 апреля 2015 года некоторые информационные агентства, имеющие возможность изучить новый проект Федеральной космической программы, сообщили, что Роскосмос намерен прекратить финансирование разработки ядерной электрореактивной двигательной установки. Эти заявление были опровергнуты представителем Роскосмоса. В действительности финансирование соответствующих опытно-конструкторских работ в ФКП 2016-2025 продолжится, хотя и будет сокращено. До конца 2025 года возможен запуск испытательных образцов ядерной двигательной установки и электрореактивной двигательной системы, но ядерный транспортный буксир, каким он должен был стать по первоначальной задумке, в ближайшей перспективе не появится.

Дата последнего обновления: 30 апреля 2015 года

Опасность ракетных двигателей

Итак, компания смогла разработать подходящее топливо. Но как защитить членов экипажа корабля от радиации? По словам Майкла Идса, хранящееся между двигателем и жилым сегментом корабля жидкое топливо должно хорошо блокировать радиоактивные частицы. При проектировании корабля важно будет сделать так, чтобы будущие колонисты Марса находились как можно дальше от реактора. И все, проблему можно считать решенной.

Ядерная двигательная установка USNC-Tech

А чтобы ядерный двигатель не навредил людям во время взлета, запуск корабля предлагается осуществлять с космоса. Корабль будет выводиться на земную орбиту обычной ракетой и только потом будет включать ядерный реактор. Если катастрофа произойдет во космосе, радиоактивные вещества будут двигаться настолько медленно, что достигнут Земли или других планет только спустя десятки тысяч лет. За это время они уже утратят свои вредные свойства.

Запуск космического корабля предлагается осуществлять вне Земли, потому что так безопаснее

Агентство NASA уже должна быть в курсе об идее компании USNC-Tech. Если она будет принята, в будущем полет на Марс будет заниматься всего лишь около 90 дней. В случае, если технология окажется безопасной и эффективной, ядерные двигатели можно будет использовать даже в сфере космического туризма. Ведь в будущем людям явно будут доступны не только путешествие вокруг земной орбиты, но и экскурсии в далекие планеты.

Если вам интересны новости науки и технологий, подпишитесь на наш Telegram-канал. Там вы найдете анонсы свежих новостей нашего сайта!

Об использовании ядерных двигателей агентство NASA размышляет уже давно. О преимуществах ядерных двигателей ранее уже рассказывалось в этой статье. Также в ней говорится о других технологиях, которые могут ускорить космические путешествия.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector