Ecoparcovka.ru

ЭкоПарковка СТО
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Впрыск топлива под давлением в дизельном двигателе

На сайте вы найдете информацию о том как сделать качественный ремонт автомобиля своими руками, подробные фото отчеты по ремонту ауди с4, а также много полезной информации о диагностике и профилактике неисправностей.

Top menu

  • Главная
  • Карта сайта
  • Шинный калькулятор
  • Форум
  • Новости
  • Обратная связь

поиск google

Breadcrumbs

Меню сайта:

  • Техническое обслуживание
  • Устройство и принцип действия
  • Диагностика и устранение неисправностей
  • Фото отчеты ауди с4
  • Cоветы автомобилистам

Последние публикации

Перетяжка потолка ауди 100 с4.(Часть 3)

В первой и второй частях мы снимали обшивку потолка, сегодня же мы займемся самой перетяжкой.

Перетяжка потолка ауди 100 с4.(Часть 2)

Продолжим снятие обшивки потолка. В первой части мы сняли обшивку люка и накладки передних стоек. Сегодня мы все-таки снимем потолок.

Перетяжка потолка ауди 100 с4.(Часть 1)

В уже не молодых автомобилях, не редко можно столкнуться с проблемой провисания потолка. Происходит это, как правило, по двум причинам:

Система Common Rail — Scania XPI

Система Common Rail

Дизель системы Common Rail — это самый современный этап эволюции бензиновых и дизельных двигателей с прямым впрыском топлива. Отличие его от традиционных дизелей с низким давлением подачи топлива в наличии рампы, куда под большим давлением(более 1000 бар) подается дизельное топливо, которое далее распределяется между электрическими форсунками с соленоидными клапанами. Третье поколение систем Common Rail отличается применением пьезоэлектрических инжекторов для увеличения точности впрыска, количественное увеличение фаз впрыска, а также повышения давления подачи топлива в рампу(до 1800 бар). Разновидность для бензиновых двигателей называется Прямой впрыск (FSI,GDI и т.п.).

Система прямого впрыска дизельного топлива у Скания разработана совместно с Cummins (Камминз) и называется Scania XPI (экс-пи-уай).

История создания системы впрыска Common Rail

Опытный образец системы Common Rail был разработан в конце 60-х годов Робертом Хубером (Швейцария). Заинтересовавшись идеей Хубера, Швейцарский Федеральный Институт Технологии Ganser продолжил разработку технологии Common Rail. В середине 90-х годов инженеры японской корпорации DENSO, Шохеи Итохе и Масахико Мияки (Shohei Itoh и Masahiko Miyaki), приступили к конструированию системы Common Rail. Практическое завершение их разработок называлось ECD-U2 и использовалось при создании больших транспортных средств (судостроительной, паровозной и большегрузной технике).

Первым опытным образцом с системой Common Rail стал погрузчик Hino Raising Ranger, который поступил в продажу в 1995 году.Независимо от японских конструкторов, также в середине 90-х, итальянские компании Magneti Marelli, Centro Ricerche Fiat и Elasis приняли участие в доработке системы Common Rail. Их проект был настолько перспективен и заманчив, что его приобрела компания Bosch, которая не только завершила доработку и отладку системы, но и запустила ее в массовое производство. В 1997 году Bosch стал производить Common Rail для легковых автомобилей. Первым серийным автомобилем, оснащенным «дизельным инжектором», стал Alfa Romeo 156 с двигателем 1,9 JTD, а чуть позже — Mercedes-Benz С 220 CDI.

Принцип работы системы впрыска Common Rail

Если приводить аналогии простым языком, то Common Rail – это «дизельный инжектор». В обычном дизельном двигателе каждая секция насоса высокого давления нагнетает топливо в «индивидуальный» топливопровод (идущий к определенной форсунке). Внутренний его диаметр обычно составляет 1,6-2 мм, а наружный – 6-7 мм, то есть стенки достаточно толстые. Но когда под высоким давлением в 1300-2000 атмосфер по нему «прогоняется» порция горючего, трубка раздувается, как удав, заглатывающий жертву. И как только эта солярка уходит в форсунку, топливопровод снова сжимается. Поэтому вслед заданной порции топлива к форсунке непременно «подкачивается» крохотная лишняя доза. Эта капля, сгорая, увеличивает расход горючего, повышает дымность мотора, да и процесс ее сжигания далеко не полноценный. Вдобавок сами пульсации отдельных трубопроводов повышают шумность работы двигателя. В системе Common Rail насос высокого давления подает горючее в общий трубопровод – топливную рампу, которая играет роль ресивера. В этом промежуточном звене помещается постоянный объем солярки, которая находится не под пульсирующим давлением, а под постоянным – около 1300 атмосфер. Что же касается форсунок, то они открываются теперь гидромеханическим способом (от повышения давления в трубопроводе) и электронным – от сигнала, подаваемого на соленоид форсунки. Датчики сообщают компьютеру, управляющему работой форсунок, информацию о положении педали акселератора, давлении в рампе, температурном режиме двигателя, его нагрузке и т. д. На ее основе компьютер назначает нужное для работы мотора количество топлива и момент его подачи. Таким образом, «удав» не судорожно проталкивает по пищеводу «пищу», а работает в строгом соответствии с решениями, принимаемыми электронным мозгом.

Датчики системы Common Rail

Основными датчики, которые используются в системе — это датчик давления в рампе, датчик потока воздуха, датчики распредвала и коленвала, температурные датчики двигателя и входящего воздуха, датчик положения педали аккселератора, система подогрева.

Активаторы Common Rail

Соленоиды в системе Common rail должны реагировать в течение пол-секунlы: это инжектора, клапан регулятор давления в рампе, клапан турбонаддува и клапана рециркуляции выхлопных газов.

Инжекторы (форсунки) Common Rail

Инжектора включаются по команде контроллера — блока EDC посредством магнитного соленоида. Гидравлическая сила давления позволяет открывать и закрывать инжектор, однако активация происходит с блока управления. Некоторые инжектора имеют пьезокристаллы. Под влиянием магнитного поля они увеличиваются в размерах. В инжекторе типа Piezo Inline кристалл находится близко к игле и поэтому в нем не используется механических деталей для включения иглы. В ранних системах применялся двойной впрыск — пилотный и основной для предотвращения детонации. В современных системах используется до шести фаз впрыска. Каждый инжектор производится и тестируется в лаборатории, где ему присваивают определенный код по измеренным данным его работы. После замены инжекторов код должен быть прописан в память блока управления с помощью сканера.

Читать еще:  Mitsubishi pajero sport 2015 какой двигатель

Кто производит систему Common Rail?

На сегодняшний день существует несколько фирм, которые занимаются системами впрыска Common Rail.

В первую очередь это, конечно, концерн Bosch. Далее (по убывающей в зависимости от количества производимых систем):

— компания DELPHI («дизельное» отделение английской фирмы Lucas);
— японская компания DENSO;
— немецкая фирма Siemens VDO.

Компания SCANIA производит совместно с Cummins свою собственную систему прямого впрыска — Scania XPI.

Какие преимущества у Common Rail по сравнению с другими дизельными системами?

Компьютерное управление подачей топлива позволяет впрыскивать его в камеру сгорания цилиндра двумя точно дозированными порциями, чего раньше сделать было невозможно. Сначала поступает крохотная доза, которая при сгорании повышает температуру в камере, а следом идет главный «заряд». Для дизеля – двигателя с воспламенением топлива от сжатия – это очень важно, так как при этом давление в камере сгорания нарастает более плавно, без «рывка». Вследствие этого мотор работает мягче и менее шумно. Но главное – система Common Rail полностью исключает впрыск в камеру сгорания «досыльной» порции горючего. В результате расход топлива двигателем сокращается примерно на 20%, а крутящий момент на малых оборотах коленвала возрастает на 25%. Также уменьшается содержание в выхлопе сажи и снижается шумность работы мотора.

Впрыск топлива под давлением в дизельном двигателе

Идея непосредственного впрыска топлива в цилиндры достаточно давно и полно изучена и отработана в дизельном двигателе. В бензиновых ДВС непосредственный впрыск стал применяться совсем недавно. Этому есть ряд причин, главная из которых — высокая сложность реализации

1. Предварительные замечания

Непосредственный впрыск бензина в цилиндры (или в камеры сгорания) ДВС имеет ряд преимуществ по сравнению с впрыском во впускной коллектор (в системах группы «Mono») или на впускные клапаны (в системах группы «K» и «L»). Эти преимущества следующие:
— впрыск бензина в цилиндр реализуется под высоким давлением, чем достигается значительное измельчение его капель и высокая кинетическая энергия струи впрыска;
-имеет место полная равномерность распределения топлива по цилиндрам;
-происходит внутреннее смесеобразование;
-обеспечивается перемешивание компонентов топливовоздушной смеси на молекулярном уровне. Системы непосредственного впрыска бензина в цилиндры (или в камеры сгорания) объединяют в группу «D», которая получила свой индекс от немецкого слова «direkt», что означает «непосредственный».

Двигатели с такой системой топливного питания исключительно экономичны. Но широкому внедрению систем впрыска группы «D» препятствует их высокая конструктивная сложность, а также значительная трудоемкость при ремонте и наладке.
Из-за низких смазывающих свойств бензина топливный насос высокого давления (основной компонент системы «D») обладает недостаточной надежностью.
Гидромеханические форсунки закрытого типа, которыми оснащаются системы группы «D», при работе под высоким давлением требуют их установки непосредственно в головке блока цилиндров с помощью резьбового сочленения, что исключает возможность их эффективного охлаждения потоком бензина.
Камера сгорания при реализации внутреннего смесеобразования должна иметь специальную конфигурацию, которая не поддается теоретическому расчету. Ее форму подбирают экспериментально в процессе конструктивной разработки двигателя.
Для систем впрыска группы «D» требуются специальные свечи зажигания.
Бензиновые трубопроводы и их сочленения должны обладать исключительно высокой эксплуатационной надежностью.

Преодолеть все эти трудности «под силу» не каждой моторостроительной фирме.

2. Система впрыска «Kugelfischer»

Бензин с помощью обычного электробензонасоса подается из топливного бака в механический многосекционный шестеренчатый бензонасос высокого давления (БНВД). БНВД приводится в действие от коленчатого вала двигателя посредством ременной передачи 3. К закрытым гидромеханическим форсункам 5 бензин поступает по трубопроводам 2 поочередно в соответствии с порядком работы двигателя. Давление во внутренних полостях форсунок может изменяться в диапазоне от 120 до 180 бар под воздействием регулятора 9, который в свою очередь управляется водительской педалью газа через систему регулируемых рычагов и тяг (поз. 1 на рис. 1).

Как и в обычной форсунке закрытого типа, изменение давления в ее внутренней полости приводит к изменению цикловой подачи бензина в каждый цилиндр в отдельности. БНВД получает топливо через входной штуцер 7, а излишки топлива возвращаются в бензобак через выходной штуцер 8. Все резьбовые сочленения БНВД и форсунок уплотнены специальными втулками 6. Практика эксплуатации системы «Kugelfischer» не показала заметных ее преимуществ перед механическими системами группы «K» и «KE» и поэтому быстро была снята с производства.

3. Современные системы непосредственного впрыска бензина

Новый стимул к внедрению систем непосредственного впрыска бензина на двигателе легкового автомобиля возник с разработкой насос-форсунок высокого давления (НФВД). Эти устройства обеспечивают возможность впрыска бензина с разделением цикловой подачи на отдельные порции. Объем каждой порции, момент и продолжительность ее впрыска в цилиндр, строго регламентируются электронной системой управления. При этом все три параметра изменяются по заложенной в ЭБУ программе в зависимости от нагрузочного, скоростного и теплового режимов двигателя.

Примером системы непосредственного впрыска с управляемой цикловой подачей бензина может служить система, разработанная фирмой TOYOTA для двигателя TD-4. Основным узлом этой системы является комбинированное устройство — насос-форсунка (рис. 2).

Читать еще:  Виды работ по двигателю грузовых автомобилей

В этом устройстве односекционный одноплунжерный насос высокого давления (100. 150 бар) расположен непосредственно в корпусе закрытой гидромеханической форсунки и приводится в действие кулачком распределительного вала. Насосная часть форсунки содержит гладкую гильзу 4 с отверстием наполнительного канала 11, гладкий цилиндрический плунжер 3 и сливной канал 10. Рабочее движение плунжера вниз обеспечивается воздействием кулачка распредвала, а обратное — пружиной 2. Заполнение бензином подплунжерной полости 5 гильзы происходит при положении плунжера выше наполнительного отверстия и продолжается до тех пор, пока оно не окажется перекрытым опускаю¬щимся плунжером.

Давление под плунжером начнет возрастать только в том случае, если будут одновременно перекрыты отверстия как наполнительного, так и сливного каналов. Бензин для заполнения рабочей полости насос-форсунки подается обычным для систем впрыска способом — электробензонасосом низкого давления. Впрыск бензина в цилиндр произойдет только тогда, когда давление под плунжером превысит давление открывания клапана закрытой форсунки.

Впрыск несколькими порциями за один ход плунжера вниз реализуется за счет многократного (по числу порций) сброса давления в рабочей полости насос-форсунки ниже значения 100 бар (давление при котором запорный клапан форсунки закрывается). Сброс давления происходит тогда, когда открывается запорный электромагнитный клапан в сливном канале. Этот клапан управляется от электронной автоматики впрыска и срабатывает достаточно быстро для того, чтобы за один цикл подачи бензина успеть сформировать 3-4 порции топлива. Для повышения надежности порциального впрыска объем рабочей полости под плунжером больше объема максимальной цикловой подачи. При обратном ходе плунжера вверх запорный клапан сливного канала постоянно открыт и рабочая полость насос-форсунки наполняется бензином из обратной бензомагистрали до тех пор, пока плунжер не откроет отверстие прямого наполнительного канала. С этого момента бензин под напором подающего электробензонасоса начинает протекать через полость насос-форсунки от входного (подводящего) к сливному отверстию. Так реализуется промывка и охлаждение насос-форсунки в течение времени от конца предыдущего до начала очередного впрыска.

Основное преимущество порциального впрыска бензина состоит в том, что в камере сгорания к моменту воспламенения образуется послойная структура топливо-воздушного заряда с различным коэффициентом а в слоях. Это позволяет полностью сжигать топливо в очень бедных ТВ-смесях (с усредненным коэффициентом а=2). Экономия топлива достигает 30-35%. Повышаются равномерность крутящего момента и удельная мощность двигателя.

Возможности насос-форсунки и электронного управления цикловой подачей в двигателе «TD-4» дополнены тщательным подбором объема и формы камер сгорания в крышке цилиндров и в поршнях, местом и геометрией расположения форсунок и свечей зажигания, формой и дальнобойностью факела распыленного бензина.

Указанные схемно-конструктивные решения, реализованные в двигателе TD-4, позволили получить ряд принципиально новых эффектов:

— состав топливовоздушной смеси в цилиндре до момента принудительного воспламенения от свечи зажигания находится под контролем и управлением от ЭБУ впрыска и всегда неоднороден. Вблизи электродов свечи расположена сравнительно небольшая область, в которой состав ТВ-смеси близок к нормальному (а = 1). Это обеспечивает надежное воспламенение ТВ-смеси в цилиндре. Далее, по мере удаления от электродов свечи к периферии камеры сгорания состав ТВ-смеси обедняется, при этом среднее по объему камеры сгорания качество смеси соответствует значению а= 2. Выжигание такой бедной смеси обеспечивается факелом «открытого огня», который образуется при возгорании нормальной (стехиометрической) ТВ-смеси в области электродов свечи зажигания;

— порциальный впрыск топлива способствует образованию неоднородности ТВ-смеси не только по составу, но и по температуре заряда. Так температура смеси, по мере удаления от свечи зажигания, понижается, и около стенок камеры сгорания оказывается самой низкой благодаря тому, что на периферию бензин попадает в последний момент впрыска. Полученный эффект существенно снижает критический порог появления детонации. В результате оказалось возможным использовать низкооктановый бензин (типа АИ-92 вместо АИ-98) для двигателя с высокой степенью сжатия (более 10,5). Полученные результаты испытаний двигателя «Тоуоtа D-4» позволяют считать описанную систему непосредственного впрыска бензина перспективной для широкого внедрения на легковых автомобилях.

Однако двигатели, работающие на сильно обедненных топливовоздушных смесях, порождают исключительно сложную техническую проблему — необходимость нейтрализации оксидов азота NOx количество которых в выхлопных газах таких двигателей значительно повышено.

Как выставить угол опережения впрыска на дизеле

Необходимость установки зажигания на дизеле своими руками зачастую возникает в таких случаях:

  • зажигание дизеля требуется откорректировать параллельно замене зубчатого ремня ГРМ;
  • после демонтажа ТНВД нет возможности установить шкив топливного насоса согласно специальным меткам;

Одной из рекомендаций перед началом любых работ, связанных с разбором топливной аппаратуры дизеля, выступает острая необходимость четок отметить и освежить все метки. Для этого достаточно нанести небольшие штрихи при помощи краски или качественного маркера. Это облегчит последующую обратную сборку и установку шкива ТНВД, что автоматически исключит или сведет к минимуму потенциальные сбои зажигания.

Выставлять зажигание на дизеле можно несколькими способами:

  • строго по меткам (при условии наличия таковых);
  • методом подбора опытным путем;

Установка угла по меткам

Первый способ самостоятельного выставления угла зажигания дизеля (момента впрыска дизтоплива) по меткам подразумевает смещение топливного насоса. Такой способ подходит для дизельных ДВС, в которых установлена механическая топливная аппаратура.

Угол опережения впрыска регулируется благодаря повороту ТНВД вокруг оси. Также возможен способ, когда поворачивается зубчатый шкив распредвала по отношению к ступице. Этот способ подходит для тех конструкций, в которых насос и шкив не имеют жесткого крепления.

  1. Для регулировки зажигания на дизеле своими руками необходимо обратиться к задней части ДВС и добраться до маховика, при необходимости демонтировать с него защитный кожух.
  2. Далее понадобится обнаружить стопор на маховике, который опускается в специальную прорезь.
  3. После этого маховик нужно проворачивать вручную (при помощи ключа или другого приспособления). Проворачивание маховика означает, что вращается коленчатый вал ДВС. Крутить нужно по часовой стрелке до момента, когда сработает верхний стопор-фиксатор.
  4. Затем обращаем внимание на вал привода ТНВД. Возможно, что шкала на приводной муфте, посредством которой передается вращение, занимает верхнее положение. В таком случае метка на фланце ТНВД совмещается с нулевой меткой на приводе.
  5. После совмещения меток крепежные болты можно затягивать. Отличное от верхнего положение установочной шкалы на приводной муфте означает, что стопор маховика нужно поднять, после чего коленчатый вал двигателя снова проворачивается на один оборот. Далее снова контролируется положение шкалы.
  6. После затяжки болтов приводной муфты стопор на маховике поднимается, коленчатый вал поворачивается на 90°, затем стопор размещается в пазу.
Читать еще:  Электрическая схема коллекторного двигателя с реверсом

Завершающим этапом становится установка защиты маховика на место и затяжка крепежных болтов. Далее двигатель запускается, анализируется его работа. Агрегат на холостом ходу должен работать ровно и мягко, без провалов и дерганий. Жесткая работа дизеля, сопровождающаяся детонационными стуками, недопустима.

Далее нужно проверить правильность настройки в движении, избегая серьезных нагрузок. Прогрейте двигатель до рабочей температуры и оцените приемистость силовой установки, реакции на нажатие педали газа. Также необходимо следить за цветом выхлопных газов, так как поздний угол опережения топливного впрыска будет сопровождаться серо-черным дымлением мотора.

Подбор правильного угла впрыска

Настроить угол зажигания на дизеле опытным путем можно следующим образом:

  1. После установки шкива осуществляются попытки завести дизель. Если мотор не заводится, тогда шкив ТНВД проворачивают относительно ремня на несколько зубьев (2-4). Затем мотор пробуют завести снова.
  2. Кода мотор после описанных выше манипуляций запустился, оцените его работу. Присутствие явных детонационных стуков означает, что шкив топливного насоса нужно проворачивать на зуб или два в противоположную вращению сторону. Появление густого серого дыма может указывать на поздний угол опережения впрыска. В подобной ситуации шкив насоса проворачивается на один зуб по направлению вращения.

Второй доступный способ предполагает следующие шаги:

  • Осуществляется демонтаж трубки высокого давления с форсунки первого цилиндра. На снятую трубку необходимо плотно надеть прозрачный пластиковый шланг и расположить в вертикальном положении.
  • После этого можно включить зажигание и провернуть шкив насоса. Шкив вращается максимально мягко, медленно и аккуратно.
  • Далее необходимо следить за уровнем топлива в трубке и выявить верхнюю границу.
  • Заметив, когда уровень солярки в трубке самый высокий, на шкиве необходимо сделать метку.
  • Затем по меткам нужно выставить коленчатый и распределительный вал двигателя.

После запуска оценивается работа двигателя. В случае определения раннего или позднего угла топливного впрыска операцию по настройке следует повторить.

Во время работы послойного типа дроссельная заслонка системы практически открыта полностью, при этом заслонки впуска закрыты полностью. Поступление воздуха в камеры сгорания происходит на большой скорости, при этом образуется воздушный вихрь. Топливо при этом впрыскивается в зону свечей сгорания, на последнем этапе такта сжатия. Когда топливновоздушная смесь воспламеняется, вокруг нее образуется теплоизоляция из чистого воздуха.

Достоинства и недостатки реально работающих конструкций

Всё идеально работает только при теоретическом рассмотрении системы прямого впрыска. На практике возникают сложности.

  1. Бензин обладает посредственной смазывающей способностью, в отличие от дизельного топлива. Поэтому ТНВД и форсунки работают в условиях дефицита смазки и быстро изнашиваются. При этом их цена очень высока, как и у любой прецизионной аппаратуры. Приходится предъявлять повышенные требования к качеству топлива, что создаёт проблемы при эксплуатации.
  2. Возрастает роль системы рециркуляции. Если не разбавлять смесь выхлопными газами, то при горении сверхбедных составов будут образовываться ядовитые азотистые соединения, нейтрализация которых малоэффективна и затратна. С этим столкнулись и разработчики дизельных двигателей в последних поколениях. Однако работа EGR в моторах с прямым впрыском быстро загрязняет канал впуска, поскольку клапаны уже не омываются бензином. Падают рабочие сечения, нагар покрывает стебли, клапан может просто зависнуть и встретиться с поршнем. Помогает описанный выше комбинированный впрыск и рекомендации периодически ездить на мощностных режимах.
  3. Наличие серы в товарных бензинах при высоких давлениях и температурах вызывает образование серной кислоты, которая разрушает форсунки и ТНВД. Это препятствует эксплуатации таких моторов в районах, где трудно заправиться высококачественным топливом.

Получается, что преимущества системы, а к ним можно отнести экономию топлива на режимах малых и средних нагрузок и простоту обеспечения экологических норм, не перевешивают в глазах водителей связанных с новыми технологиями затрат. Всем нравится, когда двигатель с прямым впрыском и турбонаддувом по расходу топлива приближается к хорошему дизелю, но ровно до того момента, с которого становится ясно во сколько это обходится. Но обратный путь вряд ли возможен, требования по выбросу вредных веществ и углекислого газа уже никто не отменит. А развитие техники постепенно устранит все недостатки в целом перспективного прямого впрыска.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector