Ecoparcovka.ru

ЭкоПарковка СТО
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

В холодную погоду при пуске двигателя

Почему автомобильные аккумуляторы плохо работают в холодную погоду?

Процесс запуска автомобильного двигателя морозным зимним утром может доставить вам массу хлопот, если не позаботиться о нем с вчера. Часто двигатель незапускается из-за аккумуляторной батареи (АКБ). Почему АКБ чувствительнее к внешним условиям, чем другие узлы и системы автомобиля? Ответ кроется в способности АКБ преобразовывать химическую энергию в электрическую с минимальным выделением тепла и в малом объеме тепловой энергии, доступной при низкой температуре.

Приступая к работе

Помню, как пару лет назад я осенью купил себе машину. Зима оказалась одной из самых холодных за последние несколько лет. На протяжении двух недель столбик садового термометра не поднимался выше -10°C.

Мы отдыхали на шведском горнолыжном курорте. И вот одним февральским утром я вышел на улицу завести машину, рассчитывая с комфортом довезти семью до подъемника. Поворот ключа зажигания… Машина едва завелась. Судя по звуку, все шесть цилиндров работали не так плавно как обычно. Прежде чем двигатель заурчал как раньше, прошла почти целая минута. Меня это насторожило, ведь машина была новой. ЖК-экран между спидометром и тахометром медленно ожил. -35°C за бортом! Этим утром обойдемся без лыж!

Поскольку я по специальности инженер-электрохимик, мысли мои от заснеженных склонов плавно обратились к старому доброму свинцово-кислотному аккумулятору, который к тому моменту уже выдавал на стартер пиковый ток, так что двигатель запускался с пол-оборота.

Проблема не ограничивается АКБ, работа любого двигателя внутреннего сгорания в условиях крайне низких температур будет неустойчивой. Масло системы смазки густеет, реакции сгорания замедляются, а в важных участках системы подачи топлива может замерзнуть конденсат. Однако, моя машина завелась. А вот автомобиль с электрическим двигателем вряд ли удалось бы завести, если не подключать его на ночь к розетке.

В чем разница? Ответ кроется в том, как именно химическая энергия преобразуется в механическую:

  • ДВС преобразует содержащуюся в топливе химическую энергию в тепло, которое затем преобразуется в механическую энергию.
  • Двигатель электромобиля преобразует химическую энергию АКБ в электрическую, которая в дальнейшем преобразуется в механическую электромотором. В сравнении с ДВС количество выделяемого тепла гораздо меньше.

Процесс преобразования ДВС тепловой энергии в механическую приводит к образованию большого количества тепла, прогревающего двигатель, уже на первом такте, что обеспечивает практически мгновенное начало движения. В двигателе электромобиля тепло при низкой температуре образуется медленно, поэтому прогрева не происходит. Как говорил Лес Гроссман: «Законы физики. Их не остановить».

Обратите внимание, что КПД при преобразовании химической энергии в механическую в электромобиле гораздо выше, так как потери энергии в АКБ и электродвигателе относительно невелики.

Оставим в стороне проблемы КПД и теплообразования и, прежде чем перейти к разговору об АКБ, давайте сравним процессы, осложняющие запуск двигателя электромобиля и обычного автомобиля в условиях низкой температуры.

Сравнение процессов, протекающих в транспортных средствах

Начнем сравнение с двигателей: электрического и ДВС. Мы можем предположить, что электродвигатель в меньшей степени подвержен влиянию низких температур по сравнению с ДВС. Количество движущихся компонентов в электродвигателе меньше, а между ними находится воздух, поэтому они должны требовать меньше смазки и быть не столь чувствительны к воздействию низких температур.

Конструктивно трансмиссия электромобиля менее сложна, чем трансмиссия автомобиля, оснащенного ДВС, так как электродвигатель может работать с большим диапазоном нагрузок, выдавая превосходный крутящий момент. Кроме того, в электромобиле может быть установлено несколько двигателей (например, один в передней, а второй в задней части), поэтому ему не требуется сложной силовой передачи для использования полного привода. Таким образом, электромобилю не нужна сложная коробка передач, требующая смазки. Соответственно, электромобиль должен быть менее восприимчив к фактору температуры.

Не забывайте и том, что электромобиль не нуждается в сложной системе подачи топлива с насосами, клапанами, датчиками, форсунками и т.д. Это также положительно скажется на чувствительности электромобиля к холодной погоде в сравнении с обычным автомобилем, ведь у него меньше компонентов, где возможно образование льда.

Читать еще:  Mpi двигатель что это такое для паджеро

Самым слабым звеном в условиях холода ожидаемо является АКБ. Вообще-то влияние низких температур на работу аккумулятора можно наблюдать на множестве примеров: от военного и космического оборудования до мобильных телефонов и домашних охранных систем. Для автомобиля, оснащенного ДВС, данный компонент гораздо менее важен, так для его запуска требуется лишь кратковременный пиковый ток. Электромобилю для работы, напротив, необходим постоянный ток. Давайте поближе взглянем на работу АКБ и влияние на нее температуры.

Характеристики АКБ, зависящие от температуры

В состав АКБ входят два пористых электрода: положительный и отрицательный. Электропроводящий материал электрода состоит из частиц с большой плотностью. Пористость электродов вызвана пустотами между частицами (см. иллюстрацию ниже).

Два электрода отделены друг от друга электролитом. Кроме того, поры обоих электродов содержат электролит, заполняющий пустоты между частицами материала. Иллюстрация ниже демонстрирует процесс разряда в АКБ, причем размер частиц сильно преувеличен.

Потери в АКБ при указанном уровне заряда изображены на следующей иллюстрации, демонстрирующей вольтамперные кривые для положительного (красный) и отрицательного (синий) электродов. Рабочие точки электродов помечены как i1 и -i1. Предположим, что потенциал положительного и отрицательного электродов замеряется с помощью эталонного электрода по центру емкости с электролитом (см. иллюстрацию выше). Это необходимо для выяснения потенциала электродов по отдельности, а также для того, чтобы учесть активные потери на обоих концах эталонного электрода.

Напряжение гальванического элемента ниже по сравнению c напряжением разомкнутого (см. ниже) из-за потерь на активацию (вследствие кинетики электромеханической реакции) и массообмен, а также активных потерь. Обратите внимание, что катодный ток на положительном электроде определяется как отрицательно заряженный, в то время как анодный ток на отрицательном электроде — как положительно заряженный. Дело в том, что полярность электролита внутри АКБ обратна полярности внешней цепи.

Напряжение разомкнутого элемента

Разность потенциалов электродов при нулевой плотности тока называется напряжением разомкнутого элемента при заданном состоянии заряда, как показано на иллюстрации выше.

Это напряжение для АКБ в виде функции температуры при заданном состоянии заряда рассчитывается с помощью следующего выражения:

где E — напряжение элемента, — изменение энтропии реакции АКБ, z — количество переданных электронов, F — постоянная Фарадея. Это значит, что для АКБ, в которой суммарная реакция разряда вызывает положительное изменение энтропии ( ), рост температуры приведет к увеличению напряжения гальванического элемента. Для АКБ с отрицательным изменением энтропии это приведет к понижению напряжения.

Большая часть литий-ионных батарей, используемых в современных электрических устройствах, обладает небольшим отрицательным изменением энтропиии, что означает небольшой рост напряжения разомкнутого элемента при уменьшении температуры. Этого уже будет достаточно для улучшения работы в условиях низких температур. Однако, изменение напряжения открытого элемента в зависимости от температуры в сравнении с прочими параметрами относительно невелико и составляет около 0-0,4 мВ/К —менее 30 мВ в диапазоне от крайне низкой температуры (-35°C) до комнатной. Таким образом, причиной ухудшения эксплуатационных характеристик АКБ при низких температурах является термодинамика суммарной реакции ее разряда.

Физические характеристики электролита и электродов

Физические характеристики электролита оказывают значительное влияние на работу АКБ. Температура влияет на проводимость и диффузивность электролита и, соответственно, на эффективную проводимость и диффузивность электролита в порах электродов.

Проводимость электролита может увеличиваться на один или более порядков при изменении температуры от очень холодной (-35°C) до комнатной. Если мы построим логарифмический график проводимости электролита как функции 1/T, то получим линейную зависимость, представленную на иллюстрацию ниже. Данная иллюстрация демонстрирует уровень проводимости при низкой температуре и его рост в геометрической прогрессии при ее повышении.

Читать еще:  Где находится датчик температуры двигателя хонда стрим

Таки образом, активные (реостатные) потери в электролите АКБ возрастают при понижении температуры, что приводит к низкому напряжению гальванических элементов при заданной силе тока и низкой температуре. Кроме того, недостаточная проводимость электролита приводит к менее однородной плотности тока при распределении в пористых электродах, что, в свою очередь, снижает емкость АКБ. Емкость определяется как количество ампер-часов, которое можно извлечь из АКБ до быстрого падения напряжения. Емкость АКБ остается неизменной и при низких температурах, однако слабая проводимость и, соответственно, неравномерное распределение плотности тока не позволяют задействовать полную емкость АКБ до тех пор, пока она не нагреется.

Более того, диффузивность химических компонентов электролита, крайне важная для протекания электрохимических реакций, снижена в той же мере, что и проводимость электролита. Уменьшение диффузивности увеличивает перегрузку, что ведет к уменьшению напряжения гальванического элемента. Пониженная диффузивность также ведет к уменьшению емкости АКБ, так как крупные фракции частиц электродов АКБ становятся недоступными в результате ограничений массообмена.

Обратите внимание, что и проводимость, и диффузивность электролита связаны с подвижностью (см. соотношение Нернста — Эйнштейна).

С точки зрения физики пониженная подвижность является результатом того, что в электролите сокращается количество доступной тепловой энергии, следовательно ионам и молекулам становится сложнее преодолевать силу взаимодействия или трения. Подвижность в электролитических растворах как функция температуры описывается уравнением Аррениуса, в котором энергия активации (Ea на иллюстрации выше) представляет собой энергию необходимую для того, чтобы молекулы смогли преодолеть силу взаимодействия с соседними молекулами и начать двигаться в электролитическом растворе.

Твердый материал электрода, как правило, обладает проводимостью, на несколько порядков превышающей проводимость электролита в порах. Степень изменения проводимости в твердых материалах с изменением температуры обычно не оказывает влияния на эксплуатационные характеристики АКБ. Однако зарядка некоторых АКБ в условиях низкой температуры может стать проблематичной, так как приведет к образованию дендритов, разрушающих АКБ.

Кинетика электродов

Последним компонентом неустойчивой работы АКБ при низкой температуре является медленная кинетика анодных и катодных реакций, что приводит к перегрузке по напряжению при запуске. С точки зрения физики медленная кинетика электродов является следствием того, что энергию активации становится сложнее преодолеть, поскольку при низких температурах в системе доступно меньше тепловой энергии.

Иллюстрация ниже демонстрирует общее влияние роста потерь при запуске, активных потерь и затрат на массообмен на эксплуатационные характеристики АКБ. Мы видим, как рост общей перегрузки на двух электродах приводит к снижению напряжения гальванического элемента при указанной силе тока и состоянии заряда АКБ.

Эти кривые основываются на уравнениях Аррениуса для подвижности и кинетики электродов, которые для обратимых электрохимических реакций представляются в виде соответствующих уравнений Батлера — Вольмера.

Терморегулирование

Современные аккумуляторные системы электромобилей оснащаются сложными системами терморегуляции. Эти системы охлаждают АКБ при повышенных нагрузках или, напротив, нагревают ее при подключении к розетке холодной зимней ночью.


Система терморегуляции позволяет поддерживать АКБ в оптимальном диапазоне рабочих температур (см. иллюстрацию выше). Обратите внимание, что на графике показана не температура окружающей среды, а рабочая температура АКБ. Система терморегуляции также снижает риск возникновения термической нестабильности в литий-ионных АКБ.

Обогрев АКБ в условиях низких температур также приводит к снижению КПД электродвигателя и уменьшению максимальной дальности поездки, так как часть электроэнергии или регенерирующей мощности необходимо преобразовывать в тепловую энергию для поддержания температуры АКБ в оптимальном диапазоне. Кроме того, часть этой мощности может использоваться для обогрева кабины, что также негативно сказывается на КПД автомобиля и максимальной дальности поездки.

На иллюстрации выше представлены результаты моделирования автомобильной литий-ионной АКБ, оснащенной каналами для охлаждения и обогрева. Подобные модели широко используются при проектировании систем терморегуляции АКБ.

Читать еще:  Что такое адаптация блока управления двигателя

Заключение

Невозможность быстрого самостоятельного нагрева АКБ электромобиля после очень холодной зимней ночи, является следствием высокого КПД электродвигателя, а также того факта, что ему не требуется вырабатывать тепловую энергию, которая преобразуется в механическую работу. Поэтому в ночь перед лыжными вылазками вроде моей электромобиль нужно обязательно подключить к розетке, чтобы поддерживать температуру АКБ в пределах допустимого диапазона.

Если вы будете следовать этому совету, ваш электромобиль легко заведется даже в горах Швеции. На самом деле, большинство открытых парковок в условиях Севера (например, на Аляске, в Канаде, Швеции или Норвегии) оснащены электрическими розетками, а большинство бензиновых автомобилей оснащаются средствами обогрева двигателя. В таких условиях не стоит рисковать, даже если у вас автомобиль с двигателем внутреннего сгорания.

Если же вы забыли подключить машину к розетке на горнолыжном курорте, то лучше вернуться в уютный коттедж и вспомнить о Сванте Аррениусе, шведском ученом, который первым разработал количественное описание температурной зависимости скорости химических реакций от характеристик переноса.

Несколько правил запуска автомобиля в холодную погоду

Несколько советов, о том, как завести машину в мороз и не разрядить АКБ, так как холодный пуск имеет несколько специфических особенностей:

  1. При сильных морозах, до того, как запустить двигатель, нужно разогреть аккумулятор. Это можно сделать, включив дальний свет на 10 секунд. После этого выключить и подождав минуту, выполнить запуск.
  2. Если двигатель не завелся с первой попытки, можно попробовать дать дополнительную нагрузку на АКБ и включить еще несколько потребителей тока, например, обогрев или музыку.
  3. После зажигания выждать несколько секунд, в это время бензонасос накачает бензин, затем произвести запуск двигателя автомобиля.
  4. Необходимо помнить, что при запуске все электронные приборы машины должны быть в выключенном состоянии. Это поможет минимизировать потребление энергии от батареи.

Данные советы смогут помочь не только правильно выполнить холодный пуск двигателя, но и сохранить аккумулятор в рабочем состоянии.

Почему долго горит и затем потухает?

Все просто ребята – дело в масляном фильтре, именно из-за него происходит такая проблема. Давайте вспомним как работает масляный фильтр — насос нагнетает давление масла в систему в том числе и фильтрующий элемент, далее масло просачиваясь через фильтрующую бумагу оставляет грязь и прочие частички отработки (стружку, пыль, грязь, пригар и т.д.).

Нужно понять, что масло не должно выходить из фильтра, после остановки двигателя. То есть насос нагнал в него давление, и оно так и должно в нем держаться, то есть смазка не должна возвращаться в поддон.

Именно когда смазка стекает в поддон двигателя, насосу после пуска нужно какое-то время чтобы опять полностью прокачать систему. А у вас в это время горит лампа давления. НА это как раз и тратится от 3 до 10 секунд, все зависит от производителя, конструкции, от объема и т.д.

НО почему давление масла в одном фильтрующем элементе держится, а в другом нет? В чем причина? Все просто …

О выбрасываемых в атмосферу токсичных веществах

К токсичным веществам, выбрасываемым в атмосферу при пусках ракет-носителей, относятся оксиды азота и углерода.

При пусках твердотопливных ракет-носителей дополнительно образуются хлороводород, хлор и оксид алюминия. При работе ракетных двигателей в атмосферу выбрасываются и другие опасные вещества (атомарный водород, гидроксил, оксиды азота и др.), но это лишь доли процента в общем количестве продуктов сгорания.

Наиболее токсичны из перечисленных веществ хлороводород, хлор и диоксид азота. Оксид углерода после выброса в атмосферу быстро окисляется до углекислого газа.

Что касается оксида алюминия, то он представляет опасность лишь в виде аэрозоля, и то при систематическом воздействии больших количеств.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector