Ecoparcovka.ru

ЭкоПарковка СТО
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Щеточный двигатель переменного тока схема подключения

Устройство коллекторного электродвигателя

Чаще статор коллекторного двигателя снабжен двумя полюсами. Безотносительно, пылесос, кухонный комбайн, стиральная машина. Коллекторные двигатели поддаются регулировке, обладают приемлемыми стартовыми характеристиками, контрастируя большинству асинхронных. Для простых граждан недостаток один: шумность. Поэтому в холодильниках, вентиляторах ставится асинхронный двигатель. На вытяжках любые встретим. Рассмотрим устройство коллекторного двигателя.

Универсальные коллекторные электродвигатели УЛ06

Общие сведения

Универсальные коллекторные электродвигатели УЛ06 предназначены для привода различных механизмов и аппаратов.

Структура условного обозначения

УЛ-06Х 1 Х 2 4:
УЛ — универсальный коллекторный электродвигатель с литым
корпусом;
06 — габарит;
Х 1 — номер длины пакета;
Х 2 — климатическое исполнение по ГОСТ 15150-69: УХЛ, О;
4 — категория размещения по ГОСТ 15543-70.

Условия эксплуатации

Тип атмосферы I и II по ГОСТ 15150-69. При этом запыленность воздуха не более 1 мг/м 3 , нижнее значение рабочей температуры окружающего воздуха минус 20°С.
Окружающая среда невзрывоопасная, не содержащая токопроводящей пыли в концентрациях, снижающих параметры двигателя в недопустимых пределах.
Степень защиты двигателей IР10 по ГОСТ 17494-92.
Режим работы продолжительный (S1) по ГОСТ 183-74.
Двигатели без повреждений и остаточных деформаций в течение 2 мин выдерживают аварийное повышение частоты вращения до 1,5 номинального значения.
Предельное отклонение напряжения питания от номинального значения составляет ± 10%.
Направление вращения любое со стороны привода.
Двигатели соответствуют группе условий эксплуатации М1 по ГОСТ 17516-72.
Конструктивное исполнение по способу монтажа IМ3681 и IМ2181 по ГОСТ 2479-79.
Средний уровень звука двигателей на расстоянии 1 м от контура: 70 дБА при частоте вращения 5000 мин -1 , 75 дБА при частоте вращения 8000 мин -1 .
Допустимые вибрации в соответствии с ГОСТ 16921-83.
Превышение температуры обмоток и коллектора двигателей над верхним значением температуры окружающей среды не более допустимого значения по ГОСТ 183-74.
Способ охлаждения двигателей IС01 по ГОСТ 20459-75.
Двигатели, поставляемые для внутреннего рынка и на экспорт, соответствуют требованиям ТУ 16-513.175-75.
Двигатели, поставляемые на экспорт, дополнительно соответствуют требованиям ОСТ 16 0.800.210-83.
Конструкция электродвигателей по технике безопасности отвечает ГОСТ 12.2.007.0-75 и ГОСТ 12.2.007.1-75.
Требования пожаробезопасности по ГОСТ 12.1.004-85.
По способу защиты человека от поражения электрическим током двигатели соответствуют классу 01 ГОСТ 12.2.007.0-75.
Эксплуатация двигателей должна производиться согласно «Правилам технической эксплуатации электроустановок потребителей», утвержденным Госэнергонадзором, или инструкции по монтажу и эксплуатации для двигателей, предназначенных на экспорт.

Нормативно-технический документ

Технические характеристики

Основные технические данные двигателей приведены в табл. 1 и 2.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ ЭЛЕКТРОДВИГАТЕЛЕЙ УЛ-061

Номинальная мощность, Вт



Частота питающей сети, Гц

Потребляемый ток, А:


Частота вращения, мин -1

Номинальный вращающий момент, Н·м



ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ ЭЛЕКТРОДВИГАТЕЛЕЙ УЛ-061

Наименование параметровЗначение параметров электродвигателей
для нужд народного хозяйства и для поставок на экспортдля поставок на экспорт
120180120180
127220127220127220127220
110220110220110220110220
5060
2,051,182,71,62,31,33,01,7
1,90,952,651,352,11,02,91,45
5000±10008000±16005000±10008000±1600
0,230,210,230,21
59645964
0,830,870,830,87

Номинальная мощность, Вт


Частота питающей сети, Гц

Потребляемый ток, А:


Частота вращения, мин -1

Номинальный вращающий момент, Н·м



Схемы подключения двигателей ( 127/=110 В, 5000 мин -1 ; 220/=220 В, 5000 мин -1 ; 127/=220 В, 8000 мин -1 ) и помехоподавляющего устройства к сети
а — переменного тока;
б — постоянного тока
Для изменения направления вращения якорные концы на обоймах щеткодержателя поменять местами

Схемы подключения двигателей ( 127/=110 В, 8000 мин -1 ) и помехоподавляющего устройства к сети
а — переменного тока;
б — постоянного тока
Для изменения направления вращения якорные концы на обоймах щеткодержателя поменять местами
Средняя наработка двигателей:
1200 ч при частоте вращения 5000 мин -1 ;
720 ч при частоте вращения 8000 мин -1 .
Гарантийный срок службы двигателей для внутреннего потребления — 2,5 года со дня начала эксплуатации;
для двигателей, предназначенных на экспорт,- 2,5 года со дня начала эксплуатации и не более 3 лет с момента проследования через государственную границу.

Станина электродвигателей образуется путем обливки алюминиевым сплавом сердечника статора под давлением при одновременной опрессовке статорных листов. Листы статора имеют два полюса.
Сердечник статора цилиндрической формы с аксиальными вентиляционными каналами.
Лапы из алюминиевого сплава крепятся к статору винтами, которые ввертываются в стальную планку, расположенную в аксиальном канале между сердечником статора и станиной.
Обмотка возбуждения выполняется в виде изолированных катушек, надеваемых на полюсы. Изоляция класса Е по ГОСТ 8865-87.
Сердечник якоря состоит из насаженных на вал листов якоря. Пазы полузакрытые. Обмотка всыпная из круглого провода, закрепленного в пазах текстолитовыми клиньями.
Коллектор состоит из пластин твердой электролитической меди, запрессованных во втулку из пластмассы. Щеткодержатели — «куркового типа».
Подшипниковые щиты и крышки — из алюминиевого сплава.
Щит со стороны привода имеет в нижней части отверстия для прохода вентилирующего воздуха. Этот щит имеет фланец для крепления.
Щит со стороны коллектора имеет окна, обеспечивающие доступ к коллектору и щеткодержателю; во время работы электродвигателя щит закрыт стальным кожухом с отверстиями в нижней части для прохода вентилирующего воздуха.
Двигатели изготовляются на подшипниках качения.
Вентиляция электродвигателей осевая. Наружный воздух входит через отверстия в щите со стороны коллектора и выбрасывается через отверстия со стороны привода при помощи вентилятора, насаженного на вал. Вентилятор выполняется из алюминиевого сплава литьем под давлением.
Коробка выводов крепится в верхней части станины и состоит из пластмассовой доски зажимов и крышки из алюминиевого сплава.
Помехоподавляющее устройство, которым по требованию заказчика снабжаются коллекторные электродвигатели, представляет собой комплект конденсаторов необходимой емкости или же специальный конденсаторный блок, рассчитанный на подавление помех радиоприему в соответствии с требованиями действующих норм для промышленных или бытовых установок. Устройство устанавливается на верхней части станины и имеет скобу для крепления к электродвигателю.
Габаритные размеры двигателя представлены на рис.3.

Габаритные, установочные и присоединительные размеры электродвигателей УЛ-061 и УЛ-062 ¦

В комплект поставки входят: электродвигатель, запасные щетки — 2 шт., помехоподавляющее устройство (в составе двигателя по требованию потребителя), паспорт, сертификат качества.

Кратко об устройстве коллекторных электродвигателей

В коллекторных электродвигателях магнитные поля статора и ротора взаимодействуют под углом, максимально выгодным для придания валу момента вращения. Датчиком угла поворота (положения ротора) и одновременно системой переключения являются коллекторные щетки на роторе. Система катушек с магнитопроводами, создающая результирующее электромагнитное поле для придания момента называется якорем.

В большинстве коллекторных электродвигателей якорем является ротор, электромагнитное поле которого «цепляется» за магнитные поля магнитов или статорных обмоток возбуждения. Поэтому под словом «якорь» часто понимают ротор коллекторного двигателя, так как переключение обмоток статора является более сложным и менее эффективным.

Коллекторные электродвигатели постоянного тока с магнитами используются в основном в детских игрушках и в электроприводных устройствах автомобилей. Для создания мощного магнитного поля и более сильного крутящего момента применяют катушки возбуждения, которые подключаются несколькими способами:

  • Последовательное соединение (ток коллектора и катушек возбуждения равен). Преимуществом является большой максимальный момент, который, впрочем, может стать недостатком на холостом ходу, раскручивая вал коллекторного электродвигателя до критически высоких оборотов;
  • Параллельное соединение. Преимуществом является хорошая стабильность оборотов ротора коллекторного двигателя при изменении нагрузки на валу, но максимальный момент меньше, по сравнению с последовательным возбуждением;
  • Смешанное возбуждение, при котором одна часть обмоток ротора и статора подключается последовательно, а другая – параллельно. Самый популярный пример применения смешанного возбуждения в коллекторных электродвигателях – автомобильный стартер;
  • Независимое возбуждение, при котором ток коллектора ротора и статора регулируется отдельно. Применяется в мощных коллекторных электродвигателях на электровозах.

Оставляя в стороне теорию, следует заметить, что коллекторные электродвигатели постоянного тока с последовательным возбуждением могут также работать от переменного напряжения, по сути, являясь универсальными. Данные двигатели имеют дополнительный вывод для подключения переменного напряжения и нашли широкое применение в различных электроинструментах, благодаря «гибким» характеристикам изменения скорости оборотов и момента вращения.

Подключение однофазного коллекторного двигателя — переменного тока

В этой теме необходимо понять, — как именно подключается однофазный коллекторный двигатель переменного тока, допустим, после его ремонта. Электрическая схема рис.1 дает нам представление о характере электрических соединений, то-есть, здесь мы можем заметить, что две обмотки статора электродвигателя в электрической цепи состоят в последовательном соединении, а две обмотки ротора электродвигателя относительно внешнего источника напряжения — соединены параллельно и электрическая цепь для данного примера замыкается на обмотках ротора электродвигателя.

Кто разбирал из нас бытовые потребители электроэнергии как:

и далее, со мной согласятся, что для электрической схемы рис.1 недостает еще одного элемента — конденсатора. Следовательно, к данному названию типа двигателя можно еще добавить такое название как конденсаторный электродвигатель . Если следовать логическому мышлению, то конденсатор в схеме электродвигателя в обязательном порядке соединяется с пусковой обмоткой статора, который служит для первоначального сдвига ротора. Соответственно мы пришли к выводу, что конденсатор непосредственно должен состоять в последовательном соединении с пусковой обмоткой. Для примера, приведена схема однофазного двигателя с рабочей и пусковой обмотками статора, где сопротивление на каждой обмотке будет принимать свое значение рис.2.

В зависимости от типов асинхронных двигателей и их применения рис.3, существуют следующие схемы подключения к однофазной сети:

а) омический сдвиг фаз, биффилярный способ намотки пусковой обмотки;

б) емкостной сдвиг фаз с пусковым конденсатором;

в) емкостной сдвиг фаз с пусковым и рабочим конденсатором;

г) емкостной сдвиг фаз с рабочим конденсатором.

В схемах указаны следующие обозначения:

Перед подключением коллекторного однофазного двигателя, необходимо определить:

обмотки статора. Конденсатор, с его номинальными значениями по емкости и напряжению, и соответствующими данными для определенного типа двигателя, следует подключать к пусковой обмотке статора — последовательно. Сопротивление обмоток статора принимает следующие средние значения:

  • рабочая обмотка 10-13 Ом;
  • пусковая обмотка 30-35 Ом;
  • общее сопротивление обмоток 40-45 Ом,

— для некоторых видов бытовой техники. Выполняя замеры сопротивлений на выводах проводов обмоток статора можно определить пусковую обмотку с ее средним значением. То-есть, сопротивление пусковой обмотки принимает среднее значение между рабочей обмоткой и общим сопротивлением двух обмоток — рабочей и пусковой.

Схемы подключения и способы управления

Существует три схемы подключения двигателя постоянного тока:

  1. Обмотка возбуждения включена параллельно якорной. Обеспечивается высокая стабильность частоты вращения.
  2. Обмотка возбуждения включена последовательно с якорной. Способ позволяет регулировать вращающий момент во время пуска и получать плавную скоростную характеристику. Поэтому он используется для включения тяговых электродвигателей на транспорте.
  3. Обмотка возбуждения делится на две – одна включена параллельно с якорной, другая последовательно с ней.

Частота вращения двигателя постоянного тока с независимой (параллельной обмоткой) вычисляется по формуле: N = (U – Iя . Rя)/(kc . Ф). Где:

  • U – величина питающего напряжения.
  • Iя и Rя – ток в цепи якоря и ее сопротивление.
  • kc – коэффициент качества магнитной системы.
  • Ф – сила магнитного потока.

Изменить ее можно тремя способами:

  1. Увеличить или уменьшить величину питающего напряжения. Возможно как ускорение, так и замедление двигателя. Регулировка количества оборотов осуществляется плавно.
  2. Изменить сопротивление цепи якоря. Регулировка ведется дискретно, в сторону уменьшения, но не более чем до половины номинальных оборотов. Способ связан с большими энергетическими потерями.
  3. Изменить сопротивление цепи обмотки возбуждения. Это приводит к изменению силы магнитного потока. Чем меньше ток, тем он слабее, а частота вращения выше. Теоретически возможно торможение, но на практике, из-за насыщения магнитной системы, увеличение силы тока непропорционально велико по отношению к величине приращения силы магнитного потока. Это может привести к аварии. Однако и чрезмерное ослабление тока в обмотке возбуждения вредно – машина пойдет вразнос.

Реверсирование осуществляется изменением полярности напряжения, подаваемого на якорь.

Содержание

Строго говоря, универсальный коллекторный двигатель является коллекторным электродвигателем постоянного тока с последовательно включенными обмотками возбуждения (статора), оптимизированным для работы на переменном токе бытовой электрической сети. Такой тип двигателя независимо от полярности подаваемого напряжения вращается в одну сторону, так как за счёт последовательного соединения обмоток статора и ротора смена полюсов их магнитных полей происходит одновременно и результирующий момент остаётся направленным в одну сторону.

Для возможности работы на переменном токе применяется статор из магнитно-мягкого материала, имеющего малый гистерезис (сопротивление перемагничиванию). Для уменьшения потерь на вихревые токи статор выполняют наборным из изолированных пластин.

Особенностью (в большинстве случаев — достоинством) работы такого двигателя именно на переменном токе (а не на постоянном такого же напряжения) является то, что в режиме малых оборотов (пуск и перегрузка) индуктивное сопротивление обмоток статора ограничивает потребляемый ток и соответственно максимальный момент двигателя (оценочно) до 3—5 от номинального (против 5—10 при питании того же двигателя постоянным током). Для сближения механических характеристик у двигателей общего назначения может применяться секционирование обмоток статора — отдельные выводы (и меньшее число витков обмотки статора) для подключения переменного тока.

Реверсирование УКД осуществляется переключением полярности включения обмоток только статора или только ротора.

4 Управление шаговым двигателем с помощью Arduino

Шаговый двигатель позволяет вращать ротор на определённый угол. Это бывает полезно, когда необходимо задать положение какому-либо механизму или его узлу. Шагом двигателя называется минимальный угол, на который можно повернуть ротор двигателя. Угол поворота и направление движения задаются в управляющей программе. Существует большое разнообазие шаговых двигателей. Рассмотрим работу с ними на примере двигателя 28BYJ-48 с драйвером ULN2003.

Шаговый двигатель с контроллером —> Шаговый двигатель с контроллером

Характеристики двигателя 28BYJ-48:

Наименование параметровЗначение параметров электродвигателей
для нужд народного хозяйства и для поставок на экспортдля поставок на экспорт
180250180250
127220127220127220127220
5060
3,01,753,652,13,31,83,82,2
2,751,43,61,83,01,53,81,9
5000±10008000±16005000±10008000±1600
0,340,300,340,30
60666066
0,830,870,830,87
ХарактеристикаЗначение
Количество фаз4
Напряжение питанияот 5 до 12 В
Число шагов64
Размер шага5,625°
Скорость вращения15 об./сек
Крутящий момент450 г/см

Модуль с микросхемой драйвера для управления шаговым двигателем выглядит так:

Модуль с драйвером ULN2003

На входы IN1…IN4 подаются управляющие сигналы от Arduino. Используем любые 4 цифровых пина, например, D8…D11. На вход питания необходимо подать постоянное напряжение от 5 до 12 В. Двигателю желательно обеспечить отдельное питание. Но в данном случае, т.к. не планируется использовать двигатель на постоянной основе, можно подать питание и от Arduino. Перемычка «Вкл/выкл» просто разрывает «плюс» питания, подаваемого на драйвер. В «боевом» изделии сюда можно, например, коммутировать питание с помощью реле, когда это необходимо, чтобы снизить потребление всего изделия. Итак, схема подключения будет такой:

Схема подключения шагового двигателя с драйвером ULN2003 к Arduino

Соберём всё по схеме.

Подключение шагового двигателя 28BYJ-48 к Arduino

Для Arduino «из коробки» существует готовая библиотека для управления шаговыми двигателями. Она называется Stepper. Можно посмотреть готовые примеры в среде разработки для Arduino: File Examples Stepper. Они позволяют управлять шаговым двигателем, изменяя скорость и направление движения, поворачивать ротор на заданный угол. Как говорится – бери и пользуйся. Но давайте попробуем разобраться с принципом работы шагового двигателя самостоятельно, не применяя никаких библиотек.

Двигатель 28BYJ-48 имеет 4 фазы. Это означает, что у него имеются 4 электромагнитные катушки, которые под действием электрического тока притягивают сердечник. Если напряжение подавать на катушки поочерёдно, это заставит сердечник вращаться. Рисунок иллюстрирует данный принцип.

Схема работы шагового двигателя

Здесь на (1) напряжение подано на катушки A и D, на (2) – на A и B, (3) – B и С, (4) – C и D. Далее цикл повторяется. И таким образом ротор двигателя вращается по кругу.

Напишем самый простой скетч для уравления шаговым двигателем. В нём просто будем вращать двигатель с постоянной скоростью в одном направлении, используя только что описанный принцип.

Простейший скетч управления шаговым двигателем (разворачивается)

Как можно догадаться, задержка del определяет скорость вращения двигателя. Уменьшая или увеличивая её можно ускорять или замедлять двигатель.

Если загрузить этот скетч, то увидим, что шаговый двигатель вращается против часовой стрелки. Соответственно, можно вынести цикл вращения в одну сторону в отдельную функцию rotateCounterClockwise(). И сделать аналогичную функцию вращения в противоположную сторону rotateClockwise(), в которой фазы будут следовать в обратном порядке. Также вынесем в отдельные функции каждую из 4-х фаз чтобы избежать дублирования одинакового кода в нескольких местах программы. Теперь скетч выглядит несколько интереснее:

Скетч управления шаговым двигателем (разворачивается)

Если мы загрузим скетч и проверим, поворачивается ли ротор двигателя на целый оборот, если один раз вызвать функцию rotateClockwise(), то обнаружим, что нет. Для совершения полного оборота функцию необходимо вызвать несколько раз. Соответственно, хорошо бы добавить в качестве аргумента функции число, которое будет показывать количество раз, которые она должна выполняться.

Финальный скетч управления шаговым двигателем (разворачивается)

Вот теперь совсем другое дело! Мы можем управлять скоростью шагового двигателя, задавая задержку после каждой фазы. Мы можем менять направление движения ротора двигателя. И, наконец, мы умеем поворачивать ротор на некоторый угол. Осталось только определить, какое число необходимо передавать в функции поворота rotateClockwise() и rotateCounterClockwise(), чтобы ротор шагового двигателя 1 раз провернулся на 360° вокруг своей оси. Собственно, дальнейшие наработки – вопрос фантазии или необходимости.

голоса
Рейтинг статьи
Читать еще:  Что такое турбина в двигателе автомобиля
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector