Генераторный режим асинхронного двигателя принцип работы
Описание генераторного режима асинхронного двигателя
Устройство представляет собой модель, которая с помощью переменного напряжения может воспроизводить электроэнергию. Генераторный режим асинхронного двигателя включает в себя две активные обмотки, благодаря которым запускается функционал устройства. Это обмотка возбуждения и статорный вариант.
- Схема работы
- Составляющие элементы
- Секреты и тонкости
- Процесс изготовления
Асинхронный генератор.Генератор из асинхронного двигателя.
Общая характеристика генератора в асинхронном режиме
Асинхронный генератор (АГ) является наиболее распространенной электрической машиной переменного тока, применяемой преимущественно в качестве двигателя.
Только низковольтные АГ (до 500 В питающего напряжения) мощностью от 0,12 до 400 кВт потребляют более 40% всей вырабатываемой в мире электроэнергии, а годовой их выпуск составляет сотни миллионов, покрывая самые разнообразные потребности промышленного и сельскохозяйственного производства, судовых, авиационных и транспортных систем, систем автоматики, военной и специальной техники.[ad#строчный]
Эти двигатели сравнительно просты по конструкции, весьма надежны в эксплуатации, имеют достаточно высокие энергетические показатели и невысокую стоимость. Именно поэтому непрерывно расширяется сфера использования асинхронных двигателей как в новых областях техники, так и взамен более сложных электрических машин различных конструкций.
Например, значительный интерес в последние годы вызывает применение асинхронных двигателей в генераторном режиме для обеспечения питанием как потребителей трехфазного тока, так и потребителей постоянного тока через выпрямительные устройства. В системах автоматического управления, в следящем электроприводе, в вычислительных устройствах широко применяются асинхронные тахогенераторы с короткозамкнутым ротором для преобразования угловой скорости в электрический сигнал.
Применение асинхронного режима генератора
[adsense_id=»1″]
В определенных условиях эксплуатации автономных источников электроэнергии применение асинхронный режим генератора оказывается предпочтительным или даже единственно возможным решением, как, например, в высокоскоростных передвижных электростанциях с безредукторным газотурбинным приводом с частотой вращения п = (9…15)10 3 об/мин. В работе [82] описан АГ с массивным ферромагнитным ротором мощностью 1500 кВт при п = =12000 об/мин, предназначенный для автономного сварочного комплекса «Север». В данном случае массивный ротор с продольными пазами прямоугольного сечения не содержит обмоток и выполняется из цельной стальной поковки, что дает возможность непосредственного сочленения ротора двигателя в генераторном режиме с газотурбинным приводом при окружной скорости на поверхности ротора до 400 м/с. Для ротора с шихтованным сердечником и к.з. обмоткой типа «беличья клетка» допустимая окружная скорость не превышает 200 — 220 м/с.[ad#строчный]
Другим примером эффективного применения асинхронного двигателя в генераторном режиме является давнее их использование в мини-ГЭС при устойчивом режиме нагрузки.
Асинхронный генератор отличаются простотой эксплуатации и обслуживания, легко включаются на параллельную работу, а форма кривой выходного напряжения у них ближе к синусоидальной, чем у СГ при работе на одну и ту же нагрузку. Кроме того, масса АГ мощностью 5-100 кВт примерно в 1,3 — 1,5 раза меньше массы СГ такой же мощности и они несут меньший объем обмоточных материалов. При этом в конструктивном отношении они ничем не отличаются от обычных АД и возможно их серийное производство на электромашиностроительных заводах, выпускающих асинхронные машины.
Недостатки асинхронного режима генератора,асинхронного двигателя(АД)
Один из недостатков АД — это то, что они являются потребителями значительной реактивной мощности (50% и более от полной мощности), необходимой для создания магнитного поля в машине, которая должна поступать из сети при параллельной работе асинхронного двигателя в генераторном режиме с сетью или от другого источника реактивной мощности (батарея конденсаторов (БК) или синхронный компенсатор (СК)) при автономной работе АГ. В последнем случае наиболее эффективно включение батареи конденсаторов в цепь статора параллельно нагрузке хотя в принципе возможно ее включение в цепь ротора. Для улучшения эксплуатационных свойств асинхронного режима генератора в цепь статора дополнительно могут включаться конденсаторы последовательно или параллельно с нагрузкой.
Во всех случаях автономной работы асинхронного двигателя в генераторном режиме источники реактивной мощности (БК или СК) должны обеспечивать реактивной мощностью как АГ, так и нагрузку, имеющую, как правило, реактивную (индуктивную) составляющую (соsφн 0).
Масса и размеры конденсаторной батареи или синхронного компенсатора могут превосходить массу асинхронного генератора и только при соsφн =1 (чисто активная нагрузка) размеры СК и масса БК сопоставимы с размером и массой АГ.
Другой, наиболее сложной проблемой является проблема стабилизации напряжения и частоты автономно работающего АГ, имеющего «мягкую» внешнюю характеристику.
При использовании асинхронного режима генератора в составе автономной ВЭУ эта проблема осложняется еще и нестабильностью частоты вращения ротора. Возможные и применяемые в настоящее время способы регулирования напряжения асинхронном режиме генератора.
При проектировании АГ для ВЭУ оптимизационные расчеты следует вести по максимуму КПД в широком диапазоне изменения частоты вращения и нагрузки, а также по минимуму затрат с учетом всей схемы управления и регулирования. Конструкция генераторов должна учитывать климатические условия работы ВЭУ, постоянно действующие механические усилия на элементы конструкции и особенно — мощные электродинамические и термические воздействия при переходных процессах, которые возникают при пусках, перерывах питания, выпадении из синхронизма, коротких замыканиях и других, а также при значительных порывах ветра.
Устройство асинхронной машины,асинхронного генератора
Устройство асинхронной машины с короткозамкнутым ротором показано на примере двигателя серии АМ (рис. 5.1).
Основными частями АД являются неподвижный статор 10 и вращающийся внутри него ротор , отделенный от статора воздушным зазором. Для уменьшения вихревых токов сердечники ротора и статора набираются из отдельных листов, отштампованных из электротехнической стали толщиной 0,35 или 0,5 мм. Листы оксидируются (подвергаются термической обработке), что увеличивает их поверхностное сопротивление.
[adsense_id=»1″]
Сердечник статора встраивается в станину 12, являющуюся внешней частью машины. На внутренней поверхности сердечника имеются пазы, в которых уложена обмотка 14. Статорную обмотку чаще всего делают трехфазной двухслойной из отдельных катушек с укороченным шагом из изолированного медного провода. Начала и концы фаз обмотки выводят на зажимы коробки выводов и обозначают так:
концы — С 4, С5, Сб .
Обмотку статора можно соединить звездой (У) или треугольником (Д). Это дает возможность применять один и тот же двигатель при двух различных линейных напряжениях, находящихся в отношении например, 127/220 В или 220/380 В. При этом соединению У соответствует включение АД на высшее напряжение.
Сердечник ротора в собранном виде запрессовывается на вал 15 горячей посадкой и предохраняется от проворачивания при помощи шпонки. На внешней поверхности сердечник ротора имеет пазы для укладки обмотки 13. Обмотка ротора в наиболее распространенных АД представляет собой ряд медных или алюминиевых стержней, расположенных в пазах и замкнутых по торцам кольцами. В двигателях мощностью до 100 кВт и более обмотка ротора выполняется заливкой пазов расплавленным алюминием под давлением. Одновременно с обмоткой отливаются и замыкающие кольца вместе с вентиляционными крылатками 9. По форме такая обмотка напоминает «беличью клетку».
Двигатель с фазным ротором.Асинхронный режим генератора.
Для специальных асинхронных двигателях обмотка ротора может выполняться подобно статорной. Ротор с такой обмоткой помимо указанных частей имеет три укрепленных на валу контактных кольца, предназначенных для соединения обмотки с внешней цепью. АД в этом случае называется двигателем с фазным ротором или с контактными кольцами.
Вал ротора 15 объединяет все элементы ротора и служит для соединения асинхронного двигателя с исполнительным механизмом.
Воздушный зазор между ротором и статором составляет от 0,4 — 0,6 мм для машин малой мощности и до 1,5 мм у машин большой мощности. Подшипниковые щиты 4 и 16 двигателя служат опорой для подшипников ротора. Охлаждение асинхронного двигателя осуществляется по принципу самообдува вентилятором 5. Подшипники 2 и 3 закрыты снаружи крышками 1 , имеющими лабиринтовые уплотнения. На корпусе статора устанавливается коробка 21с выводами 20 обмотки статора. На корпусе укрепляется табличка 17, на которой указываются основные данные АД. На рис.5.1 обозначено также: 6 — посадочное гнездо щита; 7 — кожух; 8 — корпус; 18 — лапа; 19 — вентиляционный канал.
Частотник без тормозного резистора
В некоторых моделях частотных преобразователей предусмотрена функция ограничения перенапряжения на шине постоянного тока. Тормозной резистор в таком случае не используется, при этом автоматически поддерживается максимальный тормозной момент, а время замедления может быть минимальным для данной нагрузки.
Без тормозного резистора можно обойтись еще в одном случае. Если в оборудовании используется несколько преобразователей частоты с одинаковым напряжением шины постоянного тока, их шины можно объединять. В результате ПЧ могут взаимно поглощать излишнее напряжение при торможении.
В завершение упомянем о других режимах торможения:
- режим торможения постоянным током, который можно использовать для экстренной остановки двигателя.
- режим удержания двигателя в остановленном состоянии с помощью постоянного тока. Вследствие возможного перегрева двигателя этот режим рекомендуется использовать непродолжительное время.
Трёхфазные двигатели
Трехфазные асинхронные электродвигатели, как правило, используются только на крупных промышленных предприятиях, т.к. для его работы требуется трёхфазное напряжение 380 В AC.
Отличаются по мощности и количеству обмоток. С мощностью всё понятно, чем больше мощность, тем большее усилие создаётся на валу электродвигателя.
Количество обмоток влияет на частоту вращения двигателя, а именно:
при частоте трёхфазного тока f равной 50 Гц или 3000 периодов в минуту, число оборотов N вращающегося поля в минуту будет:
- при 2 полюсах на статоре: N = (50х60) / 1 = 3000 об/мин,
- при 4 полюсах на статоре: N = (50х60) / 2 = 1500 об/мин,
- при 6 полюсах на статоре: N = (50х60) / 3 = 1000 об/мин,
- при числе пар полюсов статора, равном P: N = (fх60) / P.
Коммутационная колодка трехфазного двигателя имеет 6 зажимов, которые соединяются с началом (U1, V1, W1) и концом (U2, V2, W2) обмотки каждой фазы.
Возможно подключение обмотки трёхфазного электродвигателя в двух режимах: «звезда» и «треугольник».
- При подключении двигателя «треугольником» фазные концы обмоток подключаются последовательно друг с другом с напряжением 220 В AC.
- При подключении двигателя «звездой» все выходные концы фазных обмоток соединяются в один узел с напряжением 380 В AC.
При малых напряжениях нагрузки рекомендуется использовать соединение «треугольник», при более высоких – «звезду».
При необходимости получить консультацию по подключению и работе электродвигателя,
а также по приобретению устройств, которые помогут улучшить его работу,
обращайтесь к специалистам Компании « РусАвтоматизация » .
![]() | Хотите сохранить эту статью? Скачайте её в формате PDF | ![]() | Остались вопросы? Обсудите эту статью на нашей странице В Контакте | ![]() | Хочешь читать статьи первым, подписывайся на наш канал в Яндекс.Дзен |
Рекомендуем прочитать также:
Принудительное охлаждение электродвигателя
Пуск центробежного насоса
Применение УПП для центробежных вентиляторов