Ecoparcovka.ru

ЭкоПарковка СТО
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое устойчивость в работе двигателя

Методики оценки устойчивости синхонных двигателей при трехфазных коротких замыканиях в системе внешнего электроснабжения

  • Аннотация
  • Об авторах
  • Список литературы
  • Cited By

Аннотация

В статье показаны основные выводы, полученные при исследовании устойчивости синхронных двигателей при кратковременных нарушениях электроснабжения, обусловленных трехфазными короткими замыканиями в системах внешнего электроснабжения. Анализ работ, выполненных по данной тематике, выявил следующие их недостатки: не учитывается закон изменения напряжения на шинах двигателя, обусловленный возникшим замыканием; не учитывается зависимость напряжения на шинах двигателя от распределения токов в элементах системы электроснабжения; не учитывается воздействие нарушения на двигатель через его систему возбуждения. В рамках работы рассмотрены короткие замыкания в смежных линиях и выявлен закон изменения напряжения на шинах распределительного устройства подстанции во время замыкания. Для учета влияния указанных пренебрежений (недостатков) на устойчивость двигателя составлена модель синхронного двигателя и показаны условия ее применения. На основе проведенных исследований с использованием разработанной модели обоснованы методики оценки устойчивости синхронных двигателей при трехфазных коротких замыканиях в системах внешнего электроснабжения. Результаты исследования могут быть использованы для настройки устройств релейной защиты систем электроснабжения с синхронными двигателями.

Ключевые слова

Об авторах

Федотов Александр Иванович – доктор технических наук, профессор, Инжиниринговый центр «Компьютерное моделирование и инжиниринг в области энергетики и энергетического машиностроения» КГЭУ.

Абдуллазянов Рустем Эдвардович – кандидат технических наук, доцент кафедры релейной защиты и автоматики (РЗА) КГЭУ.

Мударисов Рамиль Миннесалихович – соискатель, КГЭУ.

Список литературы

1. Пупин В.М., Жуков В.А., Сафонов Д.О. Модернизации схемы включения элегазового выключателя для обеспечения неотключений погружных насосов // Известия высших учебных заведений. Северо-Кавказский регион. Серия: Технические науки. 2013. №1. С. 56–60.

2. Алексеев В.Ю. Защита от потери питания на перекачивающих насосных станциях: дис. . канд. техн. наук: 05.09.03. Уфа, 2012.

3. Голоднов Ю. М. Самозапуск электродвигателей. М.: Энергоатомиздат, 1985. 136 с.

4. Веников В.А. Переходные электромеханические процессы в электрических системах. М: Высш. шк., 1985. 536 с.

5. Шабанов В.А., Юсупов Р.З., Алексеев В.Ю. Устройство адаптивного автоматического включения резерва на нефтеперекачивающих станциях // Электротехнические комплексы и системы. Электротехнические и информационные комплексы и системы. 2016. Т. 12, №2. С. 16–22.

6. Marini P. Immunity to voltage dips for synchronous motors // Paper submitted to the International Conference on Power Systems Transients (IPST2013). Vancouver, Canada: 2013.

7. Hyla M. Impact of voltage dips on the operations of a high-power synchronous motor with a reactive power controller // Mining-Informatics, Automation and Electrical Engineering. 2016. N2. P. 5–13.

8. Абрамович Б.Н., Устинов Д.А., Сычев Ю.А., Плотников И.Г. Динамическая устойчивость электромеханических комплексов с синхронными и асинхронными двигателями на предприятиях нефтедобычи // Нефтегазовое дело. 2011. №3. С. 17–25.

9. Alipoor J., Doroudi A., Ghaseminezhad M. Detection of the Critical Duration of Different Types of Voltage Sags for Synchronous Machine Torque Oscillation // Energy and Power Engineering. 2012. N4. P. 117–124. DOI:10.4236/epe.2012.43016.

10. Carlsson F., Sadarangani C. Behavior of Synchronous Machines Subjected to Voltage Sags of Type A, B and E // European Power Electronics and Drives Journal (EPE). 2005. Vol. 15, no 4. P. 35–42.

11. Alipoor J., Doroudi A., Hosseinian S.H. Identification of the Critical Characteristics of Different Types of Voltage Sags for Synchronous Machine Torque Oscillations // Electric Power Components and Systems. 2014. Vol. 13, N 42.

12. Федотов А.И., Абдуллазянов Р.Э., Вагапов Г.В., Роженцова Н.В. Методика проверки эффективности токоограничивающего устройства для снижения глубины провала напряжения // Промышленная энергетика. 2016. №12. С. 28–33.

Для цитирования:

Федотов А.И., Абдуллазянов Р.Э., Мударисов Р.М. Методики оценки устойчивости синхонных двигателей при трехфазных коротких замыканиях в системе внешнего электроснабжения. Известия высших учебных заведений. ПРОБЛЕМЫ ЭНЕРГЕТИКИ. 2019;21(3-4):90-99. https://doi.org/10.30724/1998-9903-2019-21-3-4-90-99

For citation:

Fedotov A.I., Abdullazyanov R.E., Mudarisov R.M. Synchronous motors stability estimation methodologies under three-phase faults in power supply grids. Power engineering: research, equipment, technology. 2019;21(3-4):90-99. https://doi.org/10.30724/1998-9903-2019-21-3-4-90-99


Контент доступен под лицензией Creative Commons Attribution 4.0 License.

Что такое устойчивость в работе двигателя

Надёжное функционирование ЖРД и ДУ обеспечивают разработанные на предприятии и изготовляемые серийно агрегаты автоматики: различные типы клапанов, регуляторы, дроссели, редукторы и стабилизаторы.

Все они отличаются разнообразием, как по конструктивному исполнению, так и по способу установки в схему изделия. Многие из них работоспособны в средах агрессивных высококипящих и криогенных компонентов топлива с давлением до 60 МПа и различных газов с давлением до 35 МПа.

В качестве приводов используются сжатый газ, электрический ток и пиропатроны.

В пускоотсечных агрегатах применены уплотнения, обеспечивающие самые высокие требования по герметичности при давлениях до 35 МПа.

Более сотни технических решений, заложенных в конструкцию агрегатов автоматики, защищены авторскими свидетельствами на изобретение.

Назначение агрегатов регулирования состоит в том, чтобы поддерживать основные параметры двигателя или двигательной установки, а именно тягу, соотношение компонентов топлива камеры сгорания и газогенератора и давления наддува баков с топливом в заданных пределах.

Поддержание этих параметров обеспечивает высокие удельные параметры не только ДУ или двигателя, но и ракеты.

Система регулирования, состоящая из агрегатов регулирования, повышает надёжность функционирования двигателей, т.к. отклонения параметров узлов, входящих в состав двигателей, связанных с их изготовлением и эксплуатации, а также различие свойств топлива, не снижает точности поддержания тяги и соотношения компонентов топлива сверх указанных в требованиях ракетных фирм.

Основные задачи, которые приходится решать при проектировании и отработке агрегатов регулирования и автоматики для ЖРД:

  • обеспечение надёжной работоспособности конструкции при минимальном весе согласно требованиям ТЗ;
  • обеспечение необходимой точности срабатывания автоматов и поддержание регулируемых параметров;
  • обеспечение требуемых параметров агрегатов регулирования и автоматики для получения заданного по времени выхода двигателя на режим и его останов;
  • обеспечение требуемых параметров агрегатов регулирования для получения необходимой динамической устойчивости систем по регулированию тяги и соотношению компонентов топлива двигателя.

Регуляторы тяги

Регуляторы тяги обеспечивают поддержание давления или расхода компонентов топлива, поступающих в камеру сгорания или газогенератор. Двигатели КБхиммаш отличаются широким диапазоном тяг, поэтому диапазон по расходу высокотемпературных компонентов топлива составляет от 0,05 кг/с до 13 кг/с, величина регулируемого давления составляет от 50 кгс/см 2 до 200 кгс/см 2 при рабочем давлении от 75 кгс/см 2 до 350 кгс/см 2 .

Стабилизаторы давления

Система регулирования соотношения компонентов топлива двигателя обеспечивает с высокой точностью постоянное значение соотношения компонентов топлива в камере сгорания, и, следовательно, минимальные гарантийные запасы топлива, заправляемые в баки ракеты.

Диапазон по расходу стабилизаторов давления составляет от 0,75 кг/с до 44 кг/с. Точность поддержания параметра 2%.

Система регулирования соотношения компонентов топлива в газогенераторе обеспечивает заданную температуру газа на входе в турбину ТНА при работе двигателя, что является важным для надёжной работы.

Диапазон по расходу стабилизаторов давления составляет от 0,02 кг/с до 0,2 кг/с. Точность поддержания параметра 2%.

Дроссели

Разрабатываемые КБхиммаш дроссели обеспечивают изменение расхода компонента топлива в камеру сгорания или газогенератор для двигательных систем СОБ, РКС и РСК.

Редукторы давления

Газовые редукторы, работающие на воздухе, азоте и гелии, применяются для наддува баков с компонентами топлива при наличии ТНА или для подачи топлива в камеру сгорания без ТНА, для систем командного управления давлением и систем с воздушным автопилотом.

Диапазон расходов по воздуху от 4 до 120 г/с при начальном давлении на входе £ 400 кгс/см 2 . Регулируемое давление от 2 кгс/см 2 до 50 кгс/см 2 .

Основным параметром системы регулирования, помимо точности поддержания давления или расхода, является динамическая устойчивость системы регулирования при высоких энергетических характеристиках двигателя, заданных условиями выхода на режим и длительности работы. Теоретически динамическую устойчивость систем проверяют на моделях, имитирующих двигатель. Окончательная динамическая устойчивость системы проверяется в составе работающего двигателя или двигательной установки. Отработка каждой системы требует значительных средств и времени.

Суммарное количество агрегатов регулирования товарных двигателей, разработанных в КБхиммаш за 50 лет составляет 320 наименований.

Сегодня современные ЖРД представляют собой сложнейшую систему, которая обеспечивает не только необходимый тяговый и удельный импульсы, но и дросселирование тяги (многорежимность), управление вектором тяги, управляемый запуск, работу и останов двигателя в определенном временном интервале, обеспечивает функционирование многих агрегатов ракеты. Исходя из сложности поставленных задач современная двигательная установка содержит до 6 агрегатов регулирования и до 20 агрегатов автоматики.

Назначение агрегатов автоматики, различные конструкции клапанов, состоит в том, чтобы обеспечить подачу компонентов топлива в двигатель, камеру сгорания, ТНА, газогенератор при запуске и отсечку компонентов при останове двигателя, обеспечить дренирование необходимых полостей двигателя в паузах между включениями и после останова, а также обеспечить длительное хранение заправленного ДУ без нарушения герметичности.

Заправочные горловины и клапана входа

Для заправки изделий компонентами топлива разработаны горловины, которые в настоящее время эксплуатируются на различных изделиях отрасли.

Для ЖРД отработаны многоразовые и одноразовые клапаны входа, которые обеспечивают длительное хранение компонентов заправленного изделия и при срабатывании обеспечивают подачу компонентов топлива в ЖРД.

Пускоотсечные клапаны

Для выполнения различных условий работы ЖРД и ДУ разработаны многофункциональные пускоотсечные клапаны, предохранительные клапаны с высокой точностью настройки от 2 кгс/см 2 до 50 кгс/см 2 , обратные клапаны и редукционные клапаны.

Пневмогидроузлы

Для подачи компонентов топлива иди газа к потребителю разработаны: пневмоузлы – ЭПК прямого и непрямого действия, гидроузлы – ЭЖК, которые по электрической команде осуществляют подачу или прекращение подачи топлива в ЖРД; газовые дроссели для подачи газа на рулевые сопла ДУ.

Пироузлы

За период с 1959 года. По настоящее время были разработаны различные модификации пусковых и отсечных клапанов, предназначенный для подачи и отсечки рабочего тела в жидкостных или газовых магистралях ЖРД и работающих в широком диапазоне давлений и температур. Пироклапаны установлены практически во все изделия КБхиммаш и отличаются высокой степенью надёжности и герметичности, как до срабатывания за счёт оригинальной конструкции запорного органа, выполненного в виде полого стакана со срезаемым дном, так и после срабатывания, которая обеспечивается конической пробкой с канавками (ёрш).

Многие конструкции пусковых и отсечных пироклапанов защищены авторскими свидетельствами и патентами.

В двигателях КБхиммаш с ограниченным числом включений до 6 широко применяются пороховые и пиротехнические устройства, а именно:

  • пусковые камеры для начальной раскрутки ТНА;
  • пироузлы для дистанционного приведения в действие различных клапанов (взведение, пуск, останов), для вскрытия сопловых заглушек, для дистанционного зажигания других пороховых узлов;
  • устройства для зажигания несамовоспламеняющихся компонентов топлива (например Н 2 + О 2 );
  • узлы, используемые для замедления импульса (пирочасы).

Отличительной особенностью пиротехнических узлов является:

  • компактность и простота по сравнению с жидкостными, электропневматическими и механическими источниками энергии;
  • высокая удельная мощность;
  • постоянная готовность к работе;
  • быстродействие (миллисекунды);
  • длительный срок службы (до 30 лет).

Для различных двигателей с турбонасосной системой подачи тягой от 200 до 60000 кгс на предприятии разработано и сдано в серийное производство около 50-и типов высоконапорных ТНА со сверхвысокой всасывающей способностью, использующих в качестве рабочих жидкостей высококипящие и криогенные компоненты топлива, с напорами от 5 до 60 МПа, расходами от 0,15 до 150 кг/сек, оборотами до 60000 об/мин и коэффициентами С кр от 4000 до 10000.

Многие конструкторско-технологические решения, заложенные в конструкции ТНА, являются оригинальными и приоритетными. К ним относятся:

Антифрикционные присадки – продлевающие срок службы двигателя – это идеология, по которой была создана компания Liqui Moly GmbH. История Компании началась именно с антифрикционной присадки Kfz1, направленной на сохранение двигателя от износа.
Аналог Kfz1, вышедшей на рынок в 1957 году, выпускается и поныне, но уже адаптированный к требованиям современных двигателей и под названием Oil Additiv. Она создана на основе дисульфида молибдена, впоследствии примененного во многих смазочных композициях: маслах, смазках, пастах и специальных покрытиях. И именно соединение дисульфида молибдена дало название Компании. Liqui – сокр. жидкость, Moly – сокр. молибден. Таким образом, масла с дисульфидом молибдена применяются там, где особенно высоки нагрузки, имеется риск продавливания масляной пленки и образования задира. Высокая термоокислительная стабильность позволяет применять эти масла и в экстремальных условиях эксплуатации. Высокая устойчивость к старению и отменные моющие свойства позволяют снизить образование различных отложений и шламов внутри двигателя. Масла с дисульфидом молибдена также отлично подходят для обкатки новых машин и автомобилей после ремонта и переборки двигателей. Кроме того, дисульфид молибдена показал себя и как высокоэффективная антишумная присадка. Масла Liqui Moly с дисульфидом молибдена получили заслуженное признание не только в Европе, но и среди российских автомобилистов.

Все продукты с молибденом прошли лабораторные испытания и испытания на двигателях, что позволило получить сертификаты TUV, а это более чем серьезная рекомендация подтверждение не только эффективности, но и безопасности использования!

Идеология
Мелкодисперсный, химически чистый MoS2 является классической противозадирной и противоизносной присадкой в масла и смазки. Это его уникальное свойство определяется слоистой структурой. Идеологически MoS2 является прямым «родственником» графита слоистые структуры позволяют держать огромные нагрузки в узлах трения. Многие технические решения, например, шариковые версии ШРУСов, не возможно было бы реализовать без MoS2.
Молибденовая присадка MoS2 (дисульфид молибдена) образует на взаимодействующих и трущихся поверхностях двигателя прочную защитную пленку, выдерживающую высокие нагрузки. За счет этого снижается трение, уменьшается износ двигателя, снижается вероятность его отказа и увеличиваются сроки беспроблемной эксплуатации. Доказано, что при использовании этой присадки износ уменьшается примерно на 50%! Другим неоспоримым достоинством использования дисульфида молибдена является снижение расхода топлива, а также расхода масла на угар.

Компания Liqui Moly предлагает как уже готовые моторные масла с этой присадкой, так и дисульфид молибдена как самостоятельную присадку, которая добавляется в масло. Эту присадку необходимо добавлять в масло при каждой его замене. При этом она достаточно экономична 125 мл присадки достаточно для обработки 3,5 л масла, а300мл–для7л.

Конкурентные преимущества
В отличие от фирм-однодневок, бойко торгующих на российском рынке всевозможными волшебными «снадобъями» от трения и износа, непонятного происхождения и сомнительной эффективности, Liqui Moly является одним из ведущих немецких производителей моторных масел. А потому компания просто «обречена» на проведение всесторонних и строго регламентированных испытаний своей продукции без этого невозможно получить допуск автопроизводителей на использование ее продукции. Поэтому компания постоянно проводит не только лабораторные или стендовые, но и ходовые испытания на реальных автомобилях действия дисульфида молибдена как дополнительной противоизносной и антифрикционной присадки к моторным маслам. Результаты этих исследований и испытаний неоднократно печатались на страницах весьма известных и уважаемых как научных изданий, так и популярных журналов. Однако, пожалуй, наиболее впечатляющими и наглядными тестами стали испытания, которые проводились под эгидой независимых экспертов DEKRA (организация по техническому надзору за транспортом Германии).

В тестировании приняли участие восемь легковых автомобилей с дизельным двигателем VW и Audi, имеющие разный пробег и техническое состояние. Испытания проходили в два этапа. На первом этапе в автомобили было залито обычное моторное масло и установлен новый масляный фильтр. После этого автомобиль отправлялся «наматывать» 5 000 км. При этом через каждые 1 000 км пробега проводился отбор пробы моторного масла. После прохождения 5 000 км старое масло было слито, а масляный фильтр заменен. Во второй серии испытаний в свежее моторное масло была добавлена присадка дисульфида молибдена. Причем в моторное масло четырех автомобилей ввели 125 мл присадки, а в остальные четыре добавили 200 мл присадки. Общий пробег составил также 5 000 км. И также через каждые 1 000 км проводился отбор пробы моторного масла и его анализ.

В каждой пробе масла определялось содержание различных металлов: железа, хрома, цинка, алюминия, никеля, меди, олова и молибдена. При этом оценка величины износа проводилась, прежде всего, по степени увеличения в моторном масле количества железа. Накопление содержания остальных элементов происходит медленнее, и дает лишь дополнительную информацию о механизме изнашивания.

Наглядно продемонстрировать и сравнить степень износа деталей двигателей с чистым моторным маслом и в масле с присадкой дисульфида молибдена, позволяют графики, приведенные ниже.

Полученные результаты позволяют сделать следующие выводы:

Добавка в моторное масло присадки дисульфида молибдена снизила износ деталей двигателя практически у всех автомобилей. Величина снижения износа различна и зависит от условий эксплуатации и технического состояния автомобилей. Количество добавленной присадки существенно не повлияло на величину износа. Однако даже минимально необходимое количество присадки привело к существенному снижению износа двигателя. За время проведения теста не было зафиксировано ни одной поломки, связанной с применением присадки дисульфида молибдена. Возможно использованием как готовых масел с дисульфидом молибдена компании Liqui Moly, так и отдельной присадки «Oil Additiv MoS2», которая может добавляться к любому моторному маслу.

Польза и выгоды
от использования присадки MoS2:
1. Снижение общего износа двигателя, увеличение его ресурса и мощности
2. Повышение надежности работы автомобиля в целом и снижение риска внезапного отказа двигателя при любых условиях эксплуатации
3. Снижение шумности работы двигателя
4. Облегчение работы гидрокомпенсаторов, клапанов и других гидравлических устройств двигателя (пр.: гидронатяжитель цепи ГРМ, система изменения фаз ГРМ)
5. Снижение расхода топлива до 3-3,5% и уменьшение расхода масла на угар
6. Увеличение качества обкатки нового или отремонтированного двигателя

Современные антифрикционные присадки Liqui Moly.
Но прогресс не стоит на месте, и в дополнение к традиционной присадке были выпущены готовые масла с дисульфидом молибдена, а позже были созданы и более современные антифрикционные присадки: Motor Protect (1996 г), Cera Tec (2004 г) и Molygen Motor Protect (2014 г). Присадки новых поколений также содержат соединения молибдена, но уже не в виде взвеси твердых частиц, а в полностью растворимой в масле форме металлоорганических соединений. А в последней разработке Molygen Motor Protect молибден заменен на более эффективный вольфрам. Аналогов этой разработки в мире больше нет.

Выбор антифрикционных присадок.
Для двигателей классической конструкции и без экологических ограничений (то есть выпуска до 2004) года оптимальным выбором будет дисульфид молибдена (Oil Additiv). Эта же присадка незаменима при обкатке новых или капитально отремонтированных моторов классических конструкций. Эта присадка проверена временем и одобрена миллионами потребителей в Европе и России. Для более современных, преимущественно европейских, моторов, рассчитанных на полновязкие масла и имеющих экологический класс выше EURO 4, рекомендуется присадка Cera Tec. В ней молибденоорганика усилена микрокерамикой на основе нитрида бора, а базовое масло имеет полную, не сниженную вязкость. Molygen Motor Protect – антифрикционная и защитная присадка на основе органических соединений вольфрама, предлагается для добавки в современные и маловязкие масла, рекомендуемые преимущественно на корейские, японские и американские автомобили, а также в малозольные масла для самых современных европейских автомобилей, в том числе дизельных с сажевым фильтром. Более подробно прочитать о действии молибденои вольфрамоорганических антиизносных присадок можно в разделе Molygen NG настоящего учебника. Oil Additiv и Cera Tec в 2004 году получили сертификаты TUV Турингии, подтверждающие эффективность и безопасность их использования, а Cera Tec в 2007 был исследован и одобрен лабораторией APL в Ландау.

Эффект от антифрикционных присадок.
Эффект от работы каждой антифрикционной присадки примерно одинаков: снижение трения и износа на 30-50%, соответствующее увеличение ресурса, снижение шума в работе, уменьшение температуры в зонах трения, снижение расхода топлива, улучшение плавности работы двигателя и общее увеличение надежности эксплуатации. Но есть и особенности, в связи с радикальными изменениями в конструкции и материалах двигателей.

Антифрикционная присадка с дисульфидом молибдена в моторное масло Oil Additiv

Фирменный имиджевый продукт, давший название компании. Присадка с MoS2 действует на физическом уровне. Контакт взаимодействующих при движении относительно друг друга поверхностей из-за их микрошероховатости приходится на «вершины неровностей». Таким образом, происходит «местное сваривание» поверхностей и «вырывание» частей металла, т.е. изнашивание деталей. Присадка с MoS2, благодаря своей структуре «слоистого пирога», разделяет трущиеся поверхности, препятствуя их непосредственному контакту. Тем самым значительно снижается износ, нагрев поверхностей, шумность работы двигателя и расход топлива.

Антифрикционная присадка в моторное и трансмиссионное масло Cera Tec

Обладает двойным эффектом: при действии CERA TEC поверхность сглаживается посредством так называемого эвтектоидного текучего выравнивания (образуется эвтектоид, происходит химическое выравнивание микронеровностей поверхности, эффект сродни действию MOLYGEN). На поверхности трения происходит образование смешанных кристаллов из железа и молибдена, образующих очень стабильное соединение. Эти кристаллы тверже металла. При соприкосновении «вершин» неровностей металла последние деформируются и попадают под молибденовый слой. Тем самым поверхность металла становится более гладкой, снижается износ, а также уменьшается коэффициент трения. Керамические микрочастицы усиливают эффект, дополнительно выравнивая микронеровности, а сферическая форма частиц позволяет им работать как шарики в шарикоподшипнике. Рекомендуется к добавке в полновязкие масла, так как создана на базе с вязкостью SAE 50. Эффективность от однократной обработки двигателя сохраняется до 50 000 км пробега.

Антифрикционная присадка в моторное и трансмиссионное масло Cera Tec

Новейшая антифрикционная и защитная присадка Molygen Motor Protect на основе органического соединения вольфрама.

Присадка рекомендуется для всех самых современных автомобилей, в которых используются низковязкие и низкозольные масла. Присадка работает по технологии Molecular Friction Control путем высокотемпературного легирования трущихся поверхностей ионами вольфрама (W) создается прочнейший жаростойкий слой, который сохраняется более 50 000 км. Новый слой имеет более ровную структуру, за счет чего существенно снижается трение, а также достигаются высочайшие показатели стойкости к тепловым перегрузкам и механическим повреждениям. Благодаря уникальным свойствам новая формула обеспечивает максимальное снижение износа, длительный срок службы двигателя, снижение расхода топлива и улучшение экологических показателей.

Без регистрации вы можете ознакомиться с материалом,но для прохождения тестирования вам необходимо авторизоваться

LIQUI MOLY
Моторные масла, автохимия и автокосметика.
Все права защищены.

Тесты для новых моторных масел будут нешуточными!

Вторая статья о новой разрабатываемой совместно с «Шелл» категории моторных масел будущего поколения, под временным названием P-11, которая должна сменить текущий стандарт API CJ-4 моторных масел для дизельных двигателей.

Вначале немного напомним хронологию стандартов моторных масел для нагруженных двигателей Американского института нефти (API):

Таким образом, мы видим, что действующий сейчас стандарт продержался гораздо дольше своих предшественников. Новые же поколения двигателей в своем прогрессе требуют для квалификационных тестов масла, которые еще не стандартизированы. Эту задачу и решает разработка новой категории P-11.

Теперь уже ясно, что будущий стандарт новых моторных масел для нагруженных двигателей будет иметь две вариации (которые скорее всего будут называться CK-4 и FA-4). Одна будет представлять масла, которые безопасно могут использоваться в текущих транспортных средствах, другая предназначена для следующего поколения грузовых автомобилей и призвана обеспечивать максимальную экономию топлива.

Каким же тестам будут подвергаться сами новые масла для прохождения новых спецификаций? Ведь именно тесты определяют принадлежит ли к той или иной спецификации моторное масло, прежде чем оно поступит в продажу. Масла PC-11 продолжат использовать многие из уже имеющихся тестов, но некоторые из них, как например, устойчивость к сдвигу, будут иметь более жесткие требования, чтобы удовлетворять условиям работы в двигателях будущего поколения. Появятся два новых теста, которые призваны подтверждать, что новые моторные масла смогут соответствовать контролю аэрации и устойчивости к окислению необходимые для новых технологий.

Тест на устойчивость к сдвигу

Устойчивость к сдвигу является мерой способности масла противостоять механической деградации при приложении сильной динамической нагрузки (Рис 1а и 1b). Разложение полимеров масел на более мелкие частички может снизить его вязкость, что в свою очередь может привести к нарушению защиты важных частей двигателя. Маслам PC-11 придется соответствовать более строгим параметрам устойчивости на сдвиг.

Увеличивающаяся сдвиговая сила:

Рис 1a: Моторное масло с недостаточной устойчивостью к сдвигу разрушается под давлением

Рис 1b: Улучшенные масла сохраняют свою вязкость даже в случае контакта с большой нагрузкой

Тест на контроль аэрации для новых технологий

Другой важный момент — это контроль аэрации для современных технологий. Аэрацией является вкрапливание крошечных пузырьков воздуха или пены в масле, она может препятствовать его способности охлаждать и защищать двигатель. Более высокие операционные температуры, оказываемые давления и потоки в современных двигателях могут увеличить объем воздуха захваченного смазкой. Масла также все чаще используются, как гидравлические жидкости для клапанного механизма приведения — задача, которая может быть скомпрометирована маслом с имеющейся аэрацией. Таким образом контроль аэрации становится все более важной задачей.

Маслам PC-11 придется проходить тест на аэрацию нового двигателя Caterpillar.

Тест на устойчивость к окислению при работе моторного масла в более горячих двигателях

Следующее важное требование, которое также будет проверяться тестами — это улучшенная устойчивость к окислению для защиты более горячих двигателей. Окисление — это реакция молекул масла с кислородом. В результате возможна деградация масла, образование шлама, изменение его свойств, снижение срока замены, увеличение коррозийного износа. Будущее поколение двигателей скорее всего будет работать при более высоких температурах, что может значительно ускорить процесс окисления. Выбор правильных базовых масел и антиокислительных присадок может нарушить окислительные реакции и предотвратить образование вредных побочных продуктов. Маслам PC-11 придется пройти новый тест устойчивости к окислению.

Особенности и преимущества

• Создано на основе синтетических базовых масел с улучшенными характеристиками, что позволяет сократить потребление топлива*

• Окислительная стабильность† способствует снижению отложений в двигателях и их надежной работе

• Эффективные противоизносные и противозадирные свойства способствуют снижению износа в тяжелых условиях эксплуатации и продлевают срок службы двигателя

• Эффективные низкотемпературные эксплуатационные характеристики позволяют увеличить подачу масла к ответственным поверхностям подшипников при запуске и снижают образование низкотемпературного шлама при работе с частыми остановками

• Устойчивость к сдвигу, способствующая сохранению класса вязкости, поддерживает постоянную вязкость при эксплуатации в условиях высоких температур, защиту от износа и способствует снижению потребления масла

• Высокоэффективная защита от загустевания и деградации масла способствует продлению интервалов замены, помогая сократить количество замен и необходимость утилизации масла

*Относительно машинных масел на минеральной основе. Улучшение топливной экономичности зависит от типа автомобиля/оборудования, окружающей температуры, условий эксплуатации и вязкости применяемого масла.

†На основании увеличения вязкости, замеренного в ходе испытания Volvo T-13

Особенности

Преимущества и потенциальные выгоды

Эффективная защита от износа

Значительный потенциал экономии топлива

Снижение расхода топлива

Увеличенный интервал замены масла

Более редкие замены масла и меньший объем сливаемого масла

Защита выхлопной системы

Долговечность и эффективная работа выхлопной системы

Эффективная работа при низких температурах

Более легкий пуск в холодную погоду

Система курсовой устойчивости

Система курсовой устойчивости (другое наименование — система динамической стабилизации) предназначена для сохранения устойчивости и управляемости автомобиля за счет заблаговременного определения и устранения критической ситуации. С 2011 года оснащение системой курсовой устойчивости новых легковых автомобилей является обязательным в США, Канаде, странах Евросоюза.

Система позволяет удерживать автомобиль в пределах заданной водителем траектории при различных режимах движения (разгоне, торможении, движении по прямой, в поворотах и при свободном качении).

В зависимости от производителя различают следующие названия системы курсовой устойчивости:

  • ESP (Electronic Stability Programme) на большинстве автомобилей в Европе и Америке;
  • ESC (Electronic Stability Control) на автомобилях Honda, Kia, Hyundai;
  • DSC (Dynamic Stability Control) на автомобилях BMW, Jaguar, Rover;
  • DTSC (Dynamic Stability Traction Control) на автомобилях Volvo;
  • VSA (Vehicle Stability Assist) на автомобилях Honda, Acura;
  • VSC (Vehicle Stability Control) на автомобилях Toyota;
  • VDC (Vehicle Dynamic Control) на автомобилях Infiniti, Nissan, Subaru.

Устройство и принцип действия системы курсовой устойчивости рассмотрены на примере самой распространенной системы ESP, которая выпускается с 1995 года.

Устройство системы курсовой устойчивости

Система курсовой устойчивости объединяет входные датчики, блок управления и гидравлический блок в качестве исполнительного устройства.

Входные датчики фиксируют конкретные параметры автомобиля и преобразуют их в электрические сигналы. С помощью датчиков система динамической стабилизации оценивает действия водителя и параметры движения автомобиля.

Используются в оценке действий водителя датчики угла поворота рулевого колеса, давления в тормозной системе, выключатель стоп-сигнала. Оценивают фактические параметры движения датчики частоты вращения колес, продольного и поперечного ускорения, угловой скорости автомобиля, давления в тормозной системе.

Блок управления системы ESP принимает сигналы от датчиков и формирует управляющие воздействия на исполнительные устройства подконтрольных систем активной безопасности:

  • впускные и выпускные клапаны системы ABS;
  • переключающие и клапаны высокого давления системы ASR;
  • контрольные лампы системы ESP, системы ABS, тормозной системы.

В своей работе блок управления ESP взаимодействует с системой управления двигателем и автоматической коробки передач (через соответствующие блоки). Помимо приема сигналов от этих систем блок управления формирует управляющие воздействия на элементы системы управления двигателем и АКПП.

Для работы системы динамической стабилизации используется гидравлический блок системы ABS/ASR со всеми компонентами.

Принцип работы системы курсовой устойчивости

Определение наступления аварийной ситуации осуществляется путем сравнения действий водителя и параметров движения автомобиля. В случае, когда действия водителя (желаемые параметры движения) отличаются от фактических параметров движения автомобиля, система ESP распознает ситуацию как неконтролируемую и включается в работу.

Стабилизация движения автомобиля с помощью системы курсовой устойчивости может достигаться несколькими способами:

  • подтормаживанием определенных колес;
  • изменением крутящего момента двигателя;
  • изменением угла поворота передних колес (при наличии системы активного рулевого управления);
  • изменением степени демпфирования амортизаторов (при наличии адаптивной подвески) .

При недостаточной поворачиваемости система ESP предотвращает увод автомобиля наружу за пределы траектории поворота, подтормаживая заднее внутреннее колесо и изменяя крутящий момент двигателя.

При избыточной поворачиваемости занос автомобиля в повороте предотвращается подтормаживанием переднего наружного колеса и изменением крутящего момента двигателя.

Подтормаживание колес производится путем включения в работу соответствующих систем активной безопасности. Работа при этом носит циклический характер: увеличение давления, удержание давления и сброс давления в тормозной системе.

Изменение крутящего момента двигателя в системе ESP может осуществляться несколькими путями:

  • изменением положения дроссельной заслонки;
  • пропуском впрыска топлива;
  • пропуском импульсов зажигания;
  • изменением угла опережения зажигания;
  • отменой переключения передачи в АКПП;
  • перераспределением крутящего момента между осями (при наличии полного привода).

Система, объединяющая систему курсовой устойчивости, рулевое управление и подвеску носит название интегрированной системы управления динамикой автомобиля.

Дополнительные функции системы курсовой устойчивости

В конструкции системы курсовой устойчивости могут быть реализованы следующие дополнительные функции (подсистемы): гидравлический усилитель тормозов, предотвращения опрокидывания, предотвращения столкновения, стабилизации автопоезда, повышения эффективности тормозов при нагреве, удаления влаги с тормозных дисков и и др.

Все перечисленные системы, в основном, не имеют своих конструктивных элементов, а являются программным расширением системы ESP.

Система предотвращения опрокидывания ROP (Roll Over Prevention) стабилизирует движение автомобиля при угрозе опрокидывания. Предотвращение опрокидывания достигается за счет уменьшения поперечного ускорения путем подтормаживания передних колес и снижения крутящего момента двигателя. Дополнительное давление в тормозной системе создается с помощью активного усилителя тормозов.

Система предотвращения столкновения (Braking Guard) может быть реализована в автомобиле, оснащенном адаптивным круиз-контролем. Система предотвращает опасность столкновения с помощью визуальных и звуковых сигналов, а в критической ситуации — путем нагнетания давления в тормозной системе (автоматического включения насоса обратной подачи).

Система стабилизации автопоезда может быть реализована в автомобиле, оборудованным тягово-сцепным устройством. Система предотвращает рыскание прицепа при движении автомобиля, которое достигается за счет торможения колес или снижения крутящего момента.

Система повышения эффективности тормозов при нагреве FBS (Fading Brake Support, другое наименование — Over Boost) предотвращает недостаточное сцепление тормозных колодок с тормозными дисками, возникающее при нагреве, путем дополнительного увеличения давления в тормозном приводе.

Система удаления влаги с тормозных дисков активируется на скорости свыше 50км/ч и включенных стеклоочистителях. Принцип работы системы заключается в кратковременном повышении давления в контуре передних колес, за счет чего тормозные колодки прижимаются к дискам и происходит испарение влаги.

Система полного привода

Подключаемый полный привод (Part-time 4WD).

Пикап SsangYong Actyon Sport обладает системой подключаемого полного привода. В обычных условиях крутящий момент передается только на заднюю ось, а при необходимости к работе подключаются и передние колеса. Распределение крутящего момента между осями осуществляется в равных пропорциях. При этом возможность подключения полного привода только в нужный момент позволяет повысить топливную экономичность автомобиля.

Полный привод и пониженный ряд передач

Режимы работы

В общей сложности предусматривается три режима работы привода:

  • Задний привод (2WD) используется при движении пикапа на качественных дорогах в сухую погоду, и обеспечивает снижение уровня расхода топлива;
  • Полный привод (4WD High) используется при эксплуатации машины в условиях бездорожья, или на мокрых, заснеженных дорогах;
  • Полный привод (4WD Low) с пониженной передачей используется только в условиях движения по полному бездорожью, и обеспечивает максимальное использование тяги двигателя.
голоса
Рейтинг статьи
Читать еще:  Двигатель ваз 21126 что нового
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector