Ecoparcovka.ru

ЭкоПарковка СТО
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое статор от роторного двигателя

Рассказываем о проблемах роторного двигателя Mazda Renesis для RX8

Компания Mazda является чуть ли не единственным автопроизводителем, который на постоянной основе производил роторные двигатели. Серийные роторные двигатели Mazda выпускались с 1967 по 2012 год. Хотя японский автопроизводитель начал это дело в сотрудничестве с европейскими компаниями NSU и Citroёn.

Формально роторный двигатель устроен проще бензинового, но очень требователен к качеству и своевременности обслуживания. Этот двигатель не имеет кривошипношатунной группы, которая превращает прямолинейное возвратно-поступательное движение поршней во вращение. Этот двигатель сам создает вращение. Причем все вращающиеся части вращаются в одном направлении. Привычного газораспределительного механизма с впускными и выпускными клапанами и управляющими распредвалами в роторном двигателе нет вовсе.

На нашем YouTube-канале мы рассказали о последней серийной версии роторного двигателя Mazda – моторе 13B-MSP Renesis, снятый с RX-8 2007 года выпуска. Этот двигатель имеет меньший ресурс, чем его предшественник для RX-7.

Основы устройства роторного двигателя

Чтобы понять, как работает роторный двигатель, надо разобраться с его устройством. Две важные детали РПД — ротор и статор. Ротор, установленный на валу, вращается вокруг неподвижной шестерни — статора. Соединение с шестерней происходит посредством зубчатого колеса. Делают ротор из легированной стали и помещают в цилиндрический корпус.

Ротор двигателя в поперечном срезе имеет треугольную форму, его грани выпуклые, а три вершины постоянно контактируют с внутренней поверхностью корпуса. Таким образом, пространство цилиндра разделяется на три камеры. В результате вращения объем камер меняется. В определенный момент, из-за особенностей формы профиля корпуса, камер становится четыре.

  • На первом этапе в одну из камер через отверстие (впускное окно) запускается топливо.
  • Далее объем камеры с топливом уменьшается, впускное окно полностью закрывается и начинается сжатие топлива.
  • На следующем этапе образуется четыре камеры, срабатывают свечи (их две), происходит возгорание топлива, и совершается полезная работа мотора.
  • При дальнейшем вращении ротора открывается выпускное окно, в которое выходят продукты горения (выхлопные газы).

Как только выпускное окно закрывается, открывается впускное отверстие и цикл повторяется.

Один рабочий цикл совершается за один полный оборот вала. Чтобы поршневой двигатель совершил такую же работу, он должен быть двухцилиндровым.

Для обеспечения герметичности на вершинах ротора устанавливают уплотнительные пластины. К цилиндру их придавливают пружины и центробежная сила, добавляется также давление газа.

Чтобы лучше понять, как устроен роторный двигатель, и что это такое вообще, необходимо изучить схему. На ней представлено поперечное сечение агрегата и процессы, происходящие при движении ротора. Схема роторного мотора показывает, какие этапы проходит ротор, играющий роль поршня.

Ротор

Ротор асинхронного электродвигателя бывает двух видов: короткозамкнутым и фазным. Чаще всего встречаются машины с короткозамкнутым ротором. Их преимущество в простоте конструкция и несложной технологии изготовления. Что еще важно, в таких моторах отсутствует контакт с динамической конструкцией. Это повышает долговечность, делает обслуживание более редким и простым.

Асинхронный двигатель может быть с короткозамкнутым и фазным

Асинхронные электромоторы с фазным ротором имеют более сложную конструкцию. Но они позволяют плавно регулировать скорость без дополнительных устройств, со старта имеют высокий крутящий момент. Так что приходится выбирать: более простая конструкция или возможность регулировки скорости вращения.

Устройство короткозамкнутого ротора

Ротор состоит из вала и цилиндрической конструкции из короткозамкнутых стержней. Внешне эта конструкция очень напоминает беличье колесо, поэтому так часто называют короткозамкнутую обмотку ротора.

Устройство короткозамкнутого ротора

Изначально и стержни, и замыкающие кольца изготавливались из меди. Роторы современных асинхронных двигателей мощностью до 100 кВт делают из алюминиевых стержней, с алюминиевыми же замыкающими дисками. Расстояние между стержнями заливается снова-таки алюминиевым сплавом. Получается короткозамкнутый ротор, но уже со сплошным покрытием.

Так как при работе выделяется значительное количество тепла, для охлаждения перемычки «беличьего колеса» делают с дополнительными вентиляционными лопатками. Так во время работы происходит самоохлаждение. Оно работает тем эффективнее, чем выше скорость вращения.

Как устроен асинхронный двигатель: устройство и компоновка деталей

Ротор устанавливается в статор, концы вала фиксируются при помощи крышек с вмонтированными подшипниками. Это двигатель без щеток (безщеточный). Никаких дополнительных контактов и электрических соединений. Подвижная часть мотора начинает вращаться при наличии магнитного поля на статоре. Оно возникает после подачи питания. Это поле вращается, заставляя вращаться и предметы, которые находятся в его поле. Простая и надёжная конструкция, которая обусловила популярность электрических двигателей этого типа.

Как сделан фазный ротор

Устройство фазного ротора мало чем отличается от обмотки статора. Те же наборные кольца с пазами под укладку медных катушек. Количество обмоток ротора три, соединены они обычно «звездой».

Так выглядит фазный ротор асинхронного двигателя

Концы роторных обмоток крепят к контактным кольцам из меди. Эти кольца жёстко закреплены на валу. Кроме того, они обязательно изолированы между собой, не имеют электрического контакта со стальным валом (крепятся к стержню через диэлектрические прокладки). Так как наличие колец отличительная черта этого типа движков, иногда их называют кольцевыми.

Читать еще:  Что такое порядок работы цилиндров двигателя определение

Асинхронный двигатель с фазным ротором

Для фиксации ротора к корпусу статора делают две крышки с подшипниками. На одной из крышек закрепляются щетки, которые прижимаются к кольцам на валу, за счёт чего имеют с ними хороший контакт. Для регулировки скорости вращения щетки соединены с реостатом. Изменяя его сопротивление, меняем напряжение, а с ним и скорость вращения.

Что лучше короткозамкнутый или фазный?

Несмотря на то что двигатели с фазовым ротором лучше стартуют, позволяют в процессе работы плавно менять скорость при помощи обычного реостата, чаще применяется моторы короткозамкнутого типа. В этой конструкции отсутствуют щетки, которые выходят из строя первыми. Кроме того, более простое устройство подвижной части снижает стоимость двигателя, агрегат служит дольше, уход и техобслуживание проще.

Какой лучше: короткозамкнутый ротор или фазный

Тем не менее стоит более подробно ознакомиться с достоинствами и недостатками обоих типов асинхронных двигателей. Итак, достоинства короткозамкнутого асинхронного двигателя:

  • Простая конструкция.
  • Лёгкое обслуживание.
  • Более высокий КПД.
  • Нет искрообразования.
  • Малый пусковой крутящий момент.
  • Высокий пусковой ток (в 4-7 раз выше номинального).
  • Нет возможности регулировать скорость.

Магнитное поле трехфазного статора толкает ротор

Из-за высокого пускового тока прямое включение допускается для двигателей мощностью до 200 кВт. Более мощные требуют пускорегулирующей аппаратуры. Обычно используют частотный преобразователь, который плавно увеличивает ток, обеспечивая плавный старт без перегрузок.

Преимущество асинхронного фазного двигателя:

  • Быстрый и беспроблемный старт.
  • Позволяет менять скорость в процессе работы.
  • Прямое подключение возможно, практически без ограничения мощности.

Недостатки тоже есть: наличие щёток, возможность искрения, сложное и частое обслуживание.

Как регулируется частота вращения

Как уже писали, частота вращения ротора зависит от количества полюсов статора. Чем больше количество полюсов, тем меньше скорость. Но это не только так можно регулировать скорость вращения. Она еще зависит от напряжения и частоты питания.

Способы регулирования частоты асинхронного двигателя

Напряжение можно регулировать, установив потенциометр на входе. Частоту регулируют поставив частотный преобразователь. Частотник — более выгодное решение, так как он ещё и снижает стартовые токи и может быть программируемым.

Система смазки и питания роторного двигателя

Подача масла осуществляется под давлением к основным движущимся деталям. Система смазки работает следующим образом:

  • Масляный насос всасывает масло из масляного бака.
  • Через маслопровод и форсунки масло подается в замкнутый контур воздушного охлаждения.
  • Масло попадает в рабочую полость, совмещается с тепловоздушной смесью, чем обеспечивает смазку узлов и механизмов, и сгорает вместе с ней.

Система питания включается после того, как стартер обеспечит устойчивость жидкостного кольца в барабане. Это происходит так:

  • При вращении ротора его торцевые радиальные выступы отсекают порции топливной смеси или воздуха.
  • Сжатые порции топливной смеси или воздуха поступают в камеры сгорания.

Зажигание топливной смеси происходит по-разному, это зависит от используемого принципа смесеобразования.

Советы и рекомендации

Прежде всего, роторный двигатель необходимо «кормить» только качественным высокооктановым бензином (не ниже АИ-98). Только качественное топливо позволяет избежать детонации, а также замедляет процесс накопления нагара на электродах свечей зажигания.

Еще следует помнить, что этот мотор предельно чувствителен не только к качеству, но и типу масла. Например, не рекомендуется лить синтетику, так как быстро скапливается нагар на апексах, компрессия падает. Заливать в такой мотор следует исключительно рекомендуемое самим производителем масло или подходящую по всем допускам «минералку».

  • Как правило, основным признаком проблем роторного мотора является потеря компрессии, которая проявляется в затрудненном холодном пуске. Далее неполадки прогрессируют, мотор начинает плохо заводиться как на «холодную», так и на «горячую». Обычно в таком случае очевиден износ апексов, скопление отложений на электродах свечей зажигания и т.д.

В подобной ситуации необходимо срочно отправляться на диагностику к специалистам по ремонту ДВС данного типа. На практике, хотя ремонт сложный и дорогой, в последнее время в СНГ появилось несколько центров, специализирующихся на дефектовке и ремонте роторного двигателя с гарантией.

Напоследок отметим, как и поршневой двигатель, роторный мотор нуждается в прогреве перед поездкой. При этом пока мотор не выйдет на рабочие температуры, нагружать агрегат не следует. При таком подходе, а также в сочетании с качественным бензином и маслом, а также своевременном обслуживании, есть все шансы, что роторный двигатель Mazda RX-8 пройдет без ремонта около 80 или даже 100 тыс. км.

Строение и принцип работы роторного двигателя

Схема работы роторного двигателя представляет собой нечто совершенно иное, чем обычный ДВС. Во-первых, следует оставить в прошлом конструкцию двигателя внутреннего сгорания, известную нам. А во-вторых, попытаться впитать в себя новые знания и понятия.

Как и поршневой, роторный двигатель использует давление которое создается при сжигании смеси воздуха и топлива. В поршневых двигателях, это давление создается в цилиндрах, и двигает поршни вперед и назад. Шатуны и коленчатый вал преобразуют возвратно-поступательные движения поршня во вращательное движение, которое может быть использовано для вращения колес автомобиля.

РПД назван так из-за ротора, то есть такой части мотора, которая движется. Благодаря этому движению мощность передаётся на сцепление и КПП. По сути, ротор выталкивает энергию топлива, которая затем передаётся колёсам через трансмиссию. Сам ротор выполнен обязательно из легированной стали и имеет, как и говорилось выше, форму треугольника.

Капсула, где находится ротор, — это своеобразная матрица, центр вселенной, где все процессы и происходят. Другими словами, именно в этом овальном корпусе происходит:

  • сжатие смеси;
  • топливный впрыск;
  • поступление кислорода;
  • зажигание смеси;
  • отдача сгоревших элементов в выпуск.

Одним словом, шесть в одном, если хотите.

Сам ротор крепится на специальном механизме и не вращается вокруг одной оси, а как бы бегает. Таким образом, создаются изолированные друг от друга полости внутри овального корпуса, в каждой из которых и происходит какой-либо из процессов. Так как ротор треугольный, то полостей получается всего три.

Всё начинается следующим образом: в первой образующейся полости происходит всасывание, то есть камера наполняется воздушно-топливной смесью, которая здесь же перемешивается. После этого ротор вращается и толкает эту перемешанную смесь в другую камеру. Здесь смесь сжимается и воспламеняется при помощи двух свечей.

Смесь после этого идёт в третью полость, где и происходит вытеснение частей использованного топлива в систему выхлопа.

Это и есть полный цикл работы РПД. Но не всё так просто. Это мы рассмотрели схему РПД только с одной стороны. А действия эти проходят постоянно. Если говорить иначе, процессы возникают сразу с трёх сторон ротора. В итоге всего за единственный оборот агрегата повторяется три такта.

Опять же, производительность — это не одно достоинство РПД. Их у него много. Как и было сказано выше, роторный двигатель очень компактный и в нём используется на целых тысячу деталей меньше, чем в том же ДВС. В РПД всего две основные детали — ротор и статор, а проще этого ничего не придумаешь.

Высокое напряжение

Перспективный привод Porsche Taycan является продолжением новаторских традиций Цуффенхаузена. Работа электродвигателей в деталях: как это выглядит.

Откиньтесь на спинку сидения. У того, кто до упора жмет на педаль газа в Porsche Taycan Turbo S, есть 12 000 причин усесться поплотнее. У водителя и пассажиров перехватывает дыхание, когда их буквально вдавливает в сидения этой топовой модели электрического спорткара при одновременном задействовании всех 12 000 ньютон-метров крутящего момента на всех четырех колесах (Taycan Turbo S: Потребление электроэнергии смешанный цикл: 28,5 кВт·ч/100 км; выброс CO2 смешанный цикл: 0 г/км (по состоянию на 03/2021) ). Вся мощь без промедления вырывается на волю, и сила тяги обоих электродвигателей передней и задней оси практически не меняется до достижения максимальной скорости. Эта доза адреналина является активным компонентом технологии двигателя Porsche. Не случайно авторитетный Центр управления автомобильным транспортом (CAM) назвал Taycan самой инновационной моделью 2020 года в мире. Инновации в Porsche всегда означают доведение технологий до совершенства. В данном случае это не что иное, как использование потенциала электропривода таким образом, как это до сих пор никому не удавалось.

Силовой агрегат:

Эта концепция Porsche возникла не вчера. И даже не позавчера, а более 120 лет тому назад. В то время молодой Фердинанд Порше разрабатывал свои первые электромобили с управляемыми мотор-колесами — мировая новинка. Возможности электромобильности стимулировали спортивные амбиции. Его гоночный автомобиль с четырьмя электрическими мотор-колесами, стал первым полноприводным легковым автомобилем в мире.

Простые электродвигатели постоянного тока того времени давно заменены современными. Однако основной физический принцип остался прежним: магнетизм. У магнита всегда есть северный и южный полюса. Разные притягиваются, одинаковые отталкиваются. С одной стороны, существуют постоянные магниты, которые основываются на действии элементарных частиц. С другой стороны, магнитные поля также возникают при каждом движении электрического заряда. Для усиления электромагнетизма в электрическом двигателе размещают намотанный в катушку проводник под током. Электромагниты — в зависимости от конструкции двигателя также постоянные магниты — размещены на двух компонентах. Неподвижная часть называется статор, вращающаяся — ротор. В результате периодического включения и выключения электрического напряжения возникает сила притяжения и отталкивания, создающая вращение ротора.

Центральный элемент:

Больше меди в статоре благодаря технологии «шпильки для волос»

Статор окружен очень стабильной рубашкой охлаждения. Температура постоянно отслеживается и регулируется.

Медный провод, намотанный на катушки, производит магнитные поля при прохождении через него тока.

Отдельные провода в форме шпилек для волос последовательно спаяны лазером на концах в катушки и изолированы.

Не каждый тип электромотора подходит для привода автомобиля. Porsche делает ставку на синхронный двигатель с возбуждением от постоянных магнитов (PSM). В отличие от преимущественно используемой конструкции менее затратного асинхронного двигателя у PSM бóльшая эксплуатационная мощность вследствие менее быстрого перегрева и, следовательно, отсутствия необходимости уменьшения мощности. PSM от Porsche обеспечиваются и управляются силовыми электронными устройствами с трехфазным переменным напряжением. Частота колебания напряжения через нулевую точку от плюса к минусу определяет число оборотов двигателя. Импульсный инвертор задает двигателям Taycan частоту вращающегося магнитного поля в статоре и, таким образом, регулирует число оборотов ротора. Высококачественные постоянные магниты ротора со сплавами из неодима, железа и бора намагничиваются на длительное время с помощью сильного направленного магнитного поля. Магниты обеспечивают очень сильный возврат энергии через рекуперацию при торможении. В режиме принудительного холостого хода электромотор переходит в режим генератора и дает возможность магнитам индуцировать напряжение и ток в обмотку статора. Мощность рекуперации электродвигателя Porsche самая высокая среди конкурентов.

Компактность:

Синхронные двигатели с возбуждением от постоянных магнитов для длительной мощности

Силовые электронные устройства находятся непосредственно на приводе. Так быстро, эффективно и с экономией веса достигается соединение двигателя и датчиков.

Планетарная передача переднего привода оснащена ступенью передачи в соотношении 1:8. Таким образом, крутящий момент колеса достигает 3 000 ньютон-метров.

Статор электродвигателя с возбуждением от постоянных магнитов состоит из активных электромагнитов, крутящегося ротора, пассивных постоянных магнитов. Это оптимальный принцип для коробки передач спорткара.

Технология, доведенная до совершенства: этот ген Porsche проявляется в особенности двигателей Taycan, так называемой обмотке Hairpin. Катушки статора в нем состоят не из круглой, а из прямоугольной проволоки. В отличие от классических способов обмотки, в которых медный провод покрывает катушку из бесконечного барабана, технология Hairpin является так называемым формовальным способом монтажа. Это означает, что прямоугольный медный провод делится на отдельные отрезки и сгибается латинской буквой «u», напоминая шпильку для волос (англ. Hairpin). Эти отдельные скобы вставляются в стальные листы статора, где размещена обмотка, так, что поверхности прямоугольного профиля провода лежат друг на друге. В этом состоит главное преимущество технологии Hairpin. Она дает возможность запаковать провод плотнее и поместить больше меди в статор. Если обычные способы обмотки имеют около 50 % так называемого коэффициента заполнения медью, то в технологии Porsche он составляет почти 70 %. Так увеличивается мощность и крутящий момент при одинаковом монтажном пространстве. Концы проволочных скоб запаиваются лазером: возникает катушка. Следующим важным преимуществом является улучшение теплопередачи через однородный контакт соседних проводов, а статор Hairpin может охлаждаться существенно эффективнее. Хотя более чем 90 % даваемой электродвигателями энергии идет на поступательное движение, как и в двигателе внутреннего сгорания, потери энергии превращаются в тепло, которое необходимо отвести. Для этого двигатели оснащены рубашкой охлаждения.

Инерционная масса:

Для точной настройки синхронного двигателя с возбуждением от постоянных магнитов силовые электронные устройства должны знать точное положение угла ротора. Для этого служит решающее устройство. Оно состоит из металлического роторного диска, который проводит магнитное поле, обмотки возбуждения, а также двух приемных катушек. Катушка обмотки возбуждения производит магнитное поле, которое передается на приемные обмотки через датчик вращения. Таким образом, в приемных катушках индуцируется напряжение, чье положение по фазе смещено пропорционально положению ротора. Из этой информации система управления может точно рассчитать угловое положение ротора. В этой системе управления, т. н. импульсном инверторе, сконцентрировано всё ноу-хау Porsche. Инвертор отвечает за преобразование постоянного тока батареи с напряжением 800 вольт в переменный ток и его подачу на оба электродвигателя. Porsche был первым производителем, который реализовал уровень напряжения 800 вольт. Когда-то это была разработка для гоночного Porsche 919 Hybrid. Сегодня, в серийном производстве, это решение уменьшает вес и монтажное пространство благодаря гибкому кабелю и дает возможность более быстрой зарядки.

Сеть Taycan

Задний привод с двухступенчатой коробкой передач

Передний привод и вспомогательные агрегаты

Связка проводов для привода передней оси находится над аккумулятором большой мощности

Электродвигатели достигают 16 000 оборотов в минуту. Для оптимального использования такого интервала частоты вращения в типичном для Porsche диапазоне регулирования динамики, эффективности и максимальной скорости передние и задние блоки привода оснащены отдельными коробками передач. Taycan вообще является первым среди электрических спорткаров, у которого на задней оси коробка с двумя переключаемыми передачами, первая из них очень понижена. Одноступенчатая планетарная передача на передней оси посылает силу на колеса.

С помощью такой комбинации Taycan Turbo S развивает свою потрясающую мощность. Ступень передачи на передней оси преобразовывает 440 ньютон-метров электродвигателя в почти 3 000 ньютон-метров на колесах. 610 ньютон-метров электродвигателя заднего моста увеличиваются на первой передаче до 9 000 ньютон-метров тяги. Задачей дольше переключаемой второй передачи является обеспечение эффективности и резерва мощности на высокой скорости.

Высокие технологии будущего в мельчайших деталях — так Porsche продолжает свои традиции новаторства в эпоху электрического привода.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector