Ecoparcovka.ru

ЭкоПарковка СТО
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое регулятор частоты вращения двигателя

Настройка адаптивных пропорционально-интегрально-дифференциальных регуляторов системы автоматического регулирования частоты вращения газотурбинного двигателя

  • Аннотация
  • Об авторах
  • Список литературы
  • Дополнительные файлы
  • Cited By

Аннотация

Ключевые слова

Об авторах

Чертилин Кирилл Эдуардович, аспирант кафедры автоматических систем Института кибернетики ФГБОУ ВО «МИРЭА – Российский технологический университет»

119454, Москва, пр-т Вернадского, д. 78

Ивченко Валерий Дмитриевич, доктор технических наук, профессор кафедры автоматических систем Института кибернетики ФГБОУ ВО «МИРЭА – Российский технологический университет»

119454, Москва, пр-т Вернадского, д. 78

Список литературы

1. Воробьёв В.В., Киселев А.М., Поляков В.В. Системы управления в летательных аппаратах. М.: ВВИА; 2008. 203 с.

2. Методы робастного, нейро-нечеткого и адаптивного управления, под ред. Н.Д. Егупова. М.: МГТУ им. Баумана; 2001. 662 с.

3. Гольберг Ф.Д., Батенин А.В. Математические модели газотурбинных двигателей, как объектов регулирования. М.: Изд-во МАИ; 1999. 97 с. ISBN 5-7035-2215-3

4. Рудинский И.Д. Технология проектирования автоматизированных систем обработки информации и управления. М.: Горячая Линия – Телеком; 2011. 304 с. ISBN 978-5-9912-0148-3

5. Ярушкина Н.Г. Основы теории нечетких и гибридных систем. М.: Финансы и статистик; 2009. 320 с. ISBN: 5-279-02776-6

6. Будько М.Б., Будько М.Ю., Гирик А.В., Грозов В.А. Система управления мультироторным беспилотным летательным аппаратом на основе гибридного нейрорегулятора. Научно-технический вестник информационных технологий, механики и оптики. 2019;19(2):209–215. https://doi.org/10.17586/2226-1494-2019-19-2-209-215

7. Вилесов А.В., Гуревич Е.И., Ивченко В.Д. Аналитический метод расчета и оптимизации параметров измерительных узлов автоматизированных систем контроля. Вестник концерна ПВО «Алмаз-Антей». 2015;1(13):37–42.

8. Ким Д.П. Теория автоматического управления. Многомерные, нелинейные, оптимальные и адаптивные системы. М.: Физматлит; 2016. 464 с.

9. Гутова С.Г., Казакевич И.А. Настройка параметров пропорционально интегрального регулятора с помощью метода симплекс планирования. Управление большими системами: сборник трудов. 2016;61:95–117.

10. Рутковская Д.А., Пилинский М.В., Рутковский Л.Р. Нейронные сети, генетические алгоритмы и нечеткие системы: пер. с польск. И.Д. Рудницкого. М.: Горячая линия – Телеком; 2008. 383 с. ISBN 5-93517-103-1

Дополнительные файлы

Для цитирования:

Чертилин К.Э., Ивченко В.Д. Настройка адаптивных пропорционально-интегрально-дифференциальных регуляторов системы автоматического регулирования частоты вращения газотурбинного двигателя. Российский технологический журнал. 2020;8(6):143-156. https://doi.org/10.32362/2500-316X-2020-8-6-143-156

For citation:

Chertilin K.E., Ivchenko V.D. Configuring adaptive PID-controllers of the automatic speed control system of the GTE. Russian Technological Journal. 2020;8(6):143-156. (In Russ.) https://doi.org/10.32362/2500-316X-2020-8-6-143-156


Контент доступен под лицензией Creative Commons Attribution 4.0 License.

Функциональные особенности

Регулятор частоты вращения асинхронных 3-фазных двигателей RSR-2002 используют:

  • для программирования зависимости мощности привода от частоты вращения;
  • в качестве устройства, обеспечивающего активное торможение привода;
  • как узел, который обеспечивает токовое ограничение через электропривод при переходных процессах;
  • в качестве устройства защиты от коротких замыканий;
  • для программного задания частоты по 14-ти алгоритмам, а также визуализации ее текущего значения.

Гарантия на устройство

При соблюдении всех норм эксплуатации и хранения регуляторов вращения двигателя, производитель гарантирует их отказоустойчивую работу на протяжении всего срока эксплуатации. Продолжительность гарантийного срока на RSR-2002 составляет один год со дня реализации устройства конечному потребителю.

Хранение и транспортировка

Транспортировка регуляторов должна производиться в упаковочной таре с использованием любого вида транспорта. Температурный режим в процессе перевозки устройства должен соблюдаться в пределах от 0ºС до +40ºС, а показатель относительной влажности не может превышать 80%. Хранение бока регулирования частоты осуществляется в сухих, проветриваемых помещениях, в среде которых отсутствуют агрессивные примеси и газы, способные повредить основные части устройства. Температурный режим помещений должен поддерживаться в пределах температур 0ºС … +40ºС.

Комплектность устройства

  • регулятор частоты вращения асинхронного трехфазного двигателя переменного тока RSR-2002;
  • технический паспорт;
  • потребительская упаковка.
Технические характеристики

НаименованиеЗначения
Диапазон регулирования частоты на выходе устройства, Гц0,5. 99,9
Номинальная мощность1,5кВт
Дискретность установки частоты, Гц0,1
Частота ШИМ регулятора, кГц4
Линейное напряжение на выходе, В0. 220
Пределы регулирования мощности, %100
Читать еще:  Что такое велосипед с подвесным двигателем

Доставка прибора Регулятор частоты вращения двигателя RSR-2002 1,5 кВт по России осуществляется ТК:

  • Деловые Линии;
  • ПЭК;
  • ЖелДорЭкспедиция;
  • КИТ

Главные особенности преобразователей

Современное электрооборудование – это высокотехнологичные устройства с программным управлением. За точность и надежность отвечает электронная система управления. Агрегаты достаточно компактны и просты в управлении.

В зависимости от того, можно ли регулировать показатели напряжения на выходе, преобразователи делятся на управляемые и неуправляемые. В первых параметры можно изменять, во вторых показатели задаются конструкцией агрегата. Встречаются также модели, где происходит автонастройка под параметры подключенного двигателя. Для этого требуется выполнить идентификационный пуск, во время которого автоматически определяются параметры обмоток.

Кроме возможности регулировать показатели различаются типы управления устройством. Их два: скалярное и векторное. Скалярное не дает шансов задать точные настройки, оно лишь определяет соотношение частоты на входе и выходе. При изменении входных данных конечные параметры изменяются пропорционально. Векторное управление дает возможность задавать точные показатели, необходимые для конкретного двигателя в конкретной ситуации.

Чтобы сделать работу оборудования точнее, а управление проще, современная техника оснащается картами памяти и дисплеем для отображения информации.

При использовании преобразователей необходимо учитывать некоторые нюансы. Так, работа двигателя на низких оборотах приводит к повышению температуры, с которым встроенный вентилятор может не справиться. Поэтому необходимо следить за нагревом и при необходимости использовать принудительное охлаждение.

Также работающий преобразователь становится мощным источником высокочастотного тока. Собственные микросхемы оборудования защищены от помех специальными фильтрами. Но чтобы колебания не влияли на работу других приборов, нужно использовать экранирающий кабель как можно меньшей длины. Расстояние до других кабелей должно быть не менее 10 см. Если возникает необходимость пересечения, делать это нужно под углом 90°.

Регуляторы мощности постоянного тока

Иногда возникает потребность в регулировке оборотов коллекторного двигателя постоянного тока.

Если потребитель не имеет большой мощности, то возможно последовательно подсоединить переменный резистор, но тогда КПД такого регулятора резко упадет. Существуют схемы, при помощи которых возможно довольно плавно регулировать обороты, не уменьшая КПД. Такой регулятор подойдет для изменения яркости различных ламп, напряжения питания, не превышающего 12 В. Эта схема также выполняет роль стабилизатора частоты вращения, при изменении механической нагрузки на вал обороты остаются неизменными.

Эта схема регулятора оборотов двигателя постоянного тока 12 В вполне подойдет для регулировки и стабилизации оборотов двигателей с током, не превышающим 5 А. В эту схему входит драйвер на биполярных транзисторах и таймер 7555, что обеспечивает стабильную работу и плавную скорость регулировки. Цена на детали довольно низкая, а это является несомненным плюсом. Можно также собрать регулятор оборотов электродвигателя 12 В своими руками.

Что такое частотно-регулируемый привод?

Частотно-регулируемый привод (частотно-управляемый привод, ЧУП, Variable requency Drive, VFD) — система управления частотой вращения ротора асинхронного (синхронного) электродвигателя. Состоит из собственно электродвигателя и частотного преобразователя.

Преобразователь частоты (частотный преобразователь) — это устройство состоящее из выпрямителя (моста постоянного тока), преобразующего переменный ток промышленной частоты в постоянный и инвертора (преобразователя) (иногда с ШИМ), преобразующего постоянный ток в переменный требуемых частоты и амплитуды. Выходные тиристоры (GTO) или IGBT обеспечивают необходимый ток для питания электродвигателя. Для исключения перегрузки преобразователя при большой длине фидера между преобразователем и фидером ставят дроссели, а для уменьшения электромагнитных помех — EMC-фильтр. При скалярном управлении формируются гармонические токи фаз двигателя. Векторное управление — метод управления синхронными и асинхронными двигателями, не только формирующим гармонические токи (напряжения) фаз, но и обеспечивающим управление магнитным потоком ротора (моментом на валу двигателя).

Применение частотного привода

Преобразователи частоты применяются в:

  • судовом электроприводе большой мощности
  • прокатных станах (синхронная работа клетей)
  • высокооборотном приводе вакуумных турбомолекулярных насосов (до 100.000 об/мин.)
  • конвейерных системах
  • резательных автоматах
  • станках с ЧПУ — синхронизация движения сразу нескольких осей (до 32 — например в полиграфическом или упаковывающем оборудовании) (сервоприводы)
  • автоматически открывающихся дверях
  • мешалках, насосах, вентиляторах, компрессорах
  • бытовых кондиционерах
  • стиральных машинах
  • городском электротранспорте, особенно в троллейбусах.
Читать еще:  Что проверить в двигателе перед покупкой

Наибольший экономический эффект даёт применение ЧРП в системах вентиляции, кондиционирования и водоснабжения, где применение ЧРП стало фактически стандартом.

Преимущества применения ЧРП

  • Высокая точность регулирования
  • Экономия электроэнергии в случае переменной нагрузки (то есть работы эл. двигателя с неполной нагрузкой).
  • Равный максимальному пусковой момент.
  • Возможность удалённой диагностики привода по промышленной сети
  • распознавание выпадения фазы для входной и выходной цепей
  • учёт моточасов
  • старение конденсаторов главной цепи
  • неисправность вентилятора
  • Повышенный ресурс оборудования
  • Уменьшение гидравлического сопротивления трубопровода из-за отсутствия регулирующего клапана
  • Плавный пуск двигателя, что значительно уменьшает его износ
  • ЧРП как правило содержит в себе ПИД-регулятор и может подключатся напрямую к датчику регулируемой величины (например, давления).
  • Управляемое торможение и автоматический перезапуск при пропадании сетевого напряжения
  • Подхват вращающегося электродвигателя
  • Стабилизация скорости вращения при изменении нагрузки
  • Значительное снижение акустического шума электродвигателя, (при использовании функции «Мягкая ШИМ»)
  • Дополнительная экономия электроэнергии от оптимизации возбуждения эл. двигателя
  • Позволяют заменить собой автоматический выключатель

Недостатки применения частотного привода

  • Большинство моделей ЧРП являются источником помех (требуется установка Фильтров высокочастотных помех)
  • Сравнительно высокая стоимость для ЧРП большой мощности (окупаемость минимум 1-2 года)

Применение частотных преобразователей на насосных станциях

Классический метод управления подачей насосных установок предполагает дросселирование напорных линий и регулирование количества работающих агрегатов по какому-либо техническому параметру (например, давлению в трубопроводе). Насосные агрегаты в этом случае выбираются исходя из неких расчётных характеристик (как правило, с запасом по производительности) и постоянно функционируют с постоянной частотой вращения, без учета изменяющихся расходов, вызванных переменным водопотреблением. При минимальном расходе насосы продолжают работу с постоянной частотой вращения, создавая избыточное давление в сети (причина аварий), при этом бесполезно расходуется значительное количество электроэнергии. Так, к примеру, происходит в ночное время суток, когда потребление воды резко падает. Основной эффект достигается не за счет экономии электроэнергии, а благодаря существенному уменьшению расходов на ремонт водопроводных сетей.

Появление регулируемого электропривода позволило поддерживать постоянное давление непосредственно у потребителя. Широкое применение в мировой практике получил частотно регулируемый электропривод с асинхронным электродвигателем общепромышленного назначения. В результате адаптации общепромышленных асинхронных двигателей к их условиям эксплуатации в управляемых электроприводах создаются специальные регулируемые асинхронные двигатели с более высокими энергетическими и массогабаритностоимостными показателями по сравнению с неадаптированными. Частотное регулирование скорости вращения вала асинхронного двигателя осуществляется с помощью электронного устройства, которое принято называть частотным преобразователем. Вышеуказанный эффект достигается путём изменения частоты и амплитуды трёхфазного напряжения, поступающего на электродвигатель. Таким образом, меняя параметры питающего напряжения (частотное управление), можно делать скорость вращения двигателя как ниже, так и выше номинальной. Во второй зоне (частота выше номинальной) максимальный момент на валу обратно пропорционален скорости вращения.

Метод преобразования частоты основывается на следующем принципе. Как правило, частота промышленной сети составляет 50 Гц. Для примера возьмём насос с двухполюсным электродвигателем. С учетом скольжения скорость вращения двигателя составляет около 2800 (зависит от мощности) оборотов в минуту и даёт на выходе насосного агрегата номинальный напор и производительность (так как это его номинальные параметры, согласно паспорту). Если с помощью частотного преобразователя понизить частоту и амплитуду подаваемого на него переменного напряжения, то соответственно понизятся скорость вращения двигателя, и, следовательно, изменится производительность насосного агрегата. Информация о давлении в сети поступает в блок частотного преобразователя от специального датчика давления, установленного у потребителя, на основании этих данных преобразователь соответствующим образом меняет частоту, подаваемую на двигатель.

Читать еще:  Двигатель вальтер минор 332 технические характеристики

Современный преобразователь частоты имеет компактное исполнение, пыле и влагозащищённый корпус, удобный интерфейс, что позволяет применять его в самых сложных условиях и проблемных средах. Диапазон мощности весьма широк и составляет от 0,18 до 630 кВт и более при стандартном питании 220/380 В и 50-60 Гц. Практика показывает, что применение частотных преобразователей на насосных станциях позволяет:

  • экономить электроэнергию (при существенных изменениях расхода), регулируя мощность электропривода в зависимости от реального водопотребления (эффект экономии 20-50 %);
  • снизить расход воды, за счёт сокращения утечек при превышении давления в магистрали, когда расход водопотребления в действительности мал (в среднем на 5 %);
  • уменьшить расходы (основной экономический эффект) на аварийные ремонты оборудования (всей инфраструктуры подачи воды за счет резкого уменьшения числа аварийных ситуаций, вызванных в частности гидравлическим ударом, который нередко случается в случае использования нерегулируемого электропривода (доказано, что ресурс службы оборудования повышается минимум в 1,5 раза);
  • достичь определённой экономии тепла в системах горячего водоснабжения за счёт снижения потерь воды, несущей тепло;
  • увеличить напор выше обычного в случае необходимости;
  • комплексно автоматизировать систему водоснабжения, тем самым снижая фонд заработной платы обслуживающего и дежурного персонала, и исключить влияние «человеческого фактора» на работу системы, что тоже немаловажно.

По имеющимся данным срок окупаемости проекта по внедрению преобразователей частоты составляет от 3 месяцев до 2 лет.

Потери мощности при торможении электродвигателя

Во многих установках на регулируемый электропривод возлагаются задачи не только плавного регулирования момента и скорости вращения электродвигателя, но и задачи замедления и торможения элементов установки. Классическим решением такой задачи является система привода с асинхронным двигателем с преобразователем частоты, оснащённым тормозным переключателем с тормозным резистором.

При этом в режиме замедления/торможения электродвигатель работает как генератор, преобразуя механическую энергию в электрическую, которая в итоге рассеивается на тормозном резисторе. Типичными установками, в которых циклы разгона чередуются с циклами замедления являются тяговый привод электротранспорта, подъёмники, лифты, центрифуги, намоточные машины и т. п. Функция электрического торможения вначале появилась на приводе постоянного тока (например, троллейбус). В конце ХХ века появились преобразователи частоты со встроенным рекуператором, которые позволяют возвращать энергию, полученную от двигателя, работающего в режиме торможения, обратно в сеть. В этом случае, установка начинает «приносить деньги» фактически сразу после ввода в эксплуатацию.

Принцип работы частотного преобразователя

Остались вопросы?
Специалисты ЭНЕРГОПУСК ответят на Ваши вопросы:
8-800-700-11-54 (8-18, Пн-Вт)

Типичные схемы регуляторов оборотов

На рынке сегодня есть широкий выбор регуляторов и частотных преобразователей для асинхронных двигателей. Тем не менее, для бытовых нужд подъемного или обрабатывающего оборудования вполне можно сделать расчет и сборку на микросхеме самодельного прибора на базе тиристоров или мощных транзисторов.

Ниже представлен пример схемы достаточно мощного регулятора для асинхронного двигателя. За счет чего можно добиться плавного контроля параметров его работы, снижения энергопотребления до 50%, расходов на техническое обслуживание.

Данная схема является сложной. Для бытовых нужд ее можно значительно упростить, используя в качестве рабочего элемента симистор, например, ВТ138-600. В этом случае схема будет выглядеть следующим образом:

Обороты электродвигателя будут регулироваться за счет потенциометра, который определяет фазу входного импульса, открывающего симистор.

Как можно судить из информации, представленной выше, от оборотов асинхронного двигателя зависят не только параметры его работы, но и эффективность функционирования питаемого подъемного или обрабатывающего оборудования. В торговой сети сегодня можно приобрести самые разнообразные регуляторы, но также можно совершить расчет и собрать эффективное устройство своими руками.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector