Ecoparcovka.ru

ЭкоПарковка СТО
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое пусковой конденсатор для асинхронного двигателя

Пусковое сопротивление используется там, где к электродвигателям не предъявляют больших пусковых моментов, то есть запуск с минимальной нагрузкой на валу, продолжительный период запуска, небольшая мощность электродвигателя, большое скольжение и др..

В большинстве случаев умельцы применяют ТЭНы в качестве пусковых сопротивлений по соответственной мощности электродвигателя. Но мы в начале подбирали пусковые сопротивления по электрическому сопротивлению пусковой обмотки, затем опытным путём уточняли его величину, при которой наблюдался наибольший пусковой момент электродвигателя.

Общедоступны три схемы подключения трёхфазного электродвигателя с пусковым сопротивлением.

Схемы с пусковым конденсатором и конденсаторные двигатели.

Вторым простым фазосдвигающим элементом — конденсатором, пользуются чаще и при его применении получают большие пусковые моменты в электродвигателях. В настоящее время промышленностью выпускаются специальные пусковые и рабочие конденсаторы различных модификаций. В качестве рабочего можно применить разнополярный конденсатор, рассчитанный на рабочее напряжение не менее 500v.

Ёмкость подбирается из учёта необходимости величины пускового момента. При ёмкостном сопротивлении конденсатора равном сопротивлению короткого замыкания используемой пусковой(фазной) обмотки, пусковой момент электродвигателя будет максимальным. То есть, чем больше ёмкость взятого конденсатора, тем легче и быстрее запустится электродвигатель под нагрузкой.

После запуска двигателя пусковой конденсатор необходимо сразу же отключить, так как обмотка сильно перегреется, а конденсатор от перенапряжения может взорваться. Метало-бумажные конденсаторы не так часто взрываются, как электролитические, поэтому к выбору пускового конденсатора необходимо отнестись внимательно, изучив его паспортные данные касательно рабочего напряжения.

Вот несколько основных схем с конденсатором, хотя, любой умелец может комбинировать их как угодно.

Знавал я одного мастера, который переделал трёхфазный электродвигатель на однофазный и запускал его в работу пусковым реле от холодильника.

Электродвигатели предназначенные для эксплуатации в однофазной сети конструктивно изготавливают с двумя обмотками на статоре, расположенными под некоторым углом друг к другу. Пусковая обмотка имеет меньшее электрическое сопротивление, чем рабочая и выполнена проводом немного бо́льшего сечения, чем основная.

Мощности конденсаторных двигателей невелики, так как у них наблюдается повышенное скольжение и небольшой пусковой момент.

Схемы с активным и индуктивным сопротивлением.

Если к схеме электродвигателя применить индуктивное и активное сопротивления, то можно получить некоторый сдвиг фаз и запустить асинхронный электродвигатель, питаемый трёхфазным напряжением. Этакий своеобразный расщепитель фаз, конструктивная электрическая схема которого при определённом включении дополнительных элементов, позволяет получить на её выходе трёхфазное напряжение при подаче на неё однофазного.

В качестве индуктивного сопротивления используют дроссель с воздушным зазором в сердечнике

Назовём такую схему статическим расщепителем фаз и работает она только при запуске двигателя, после чего отключаются активные элементы и двигатель работает как однофазный.

Расщепитель фаз, частотный преобразователь и взаимная индукция для запуска электродвигателей.

Что бы применить схему с использованием взаимной индукцией нужны электродвигатели, изготовленные для двухфазной сети, поэтому такой способ ограничен использованием в быту. Схему можно применить для двухфазной сети и для однофазной. Однофазная сеть может быть использована для питания двухфазного электродвигателя, а двухфазная сеть для питания трёхфазного электродвигателя.

Многие задаются вопросом: ‘то происходит с пусковой обмоткой при её отключении от фазосдвигающего элемента после запуска электродвигателя?’ Меня ранее тоже мучил такой вопрос. Провёл эксперимент. После запуска трёхфазного электродвигателя(3kw) от однофазной сети, к освободившейся пусковой обмотке подключил 1.2kw электроплитку.

Потребляемый двигателем ток незначительно изменился, а электроплита нагрелась до красна. Получается, что пусковая обмотка уже после запуска электродвигателя работает как генераторная. Оказывается , что не только в пусковой, но и в рабочей(двигательной) тоже генерируется энергия.

Примерно половина мощности генерируется самим двигателем, а половина мощности берётся от однофазной сети. Одна фаза расщепляется ещё на две и распределение напряжений в обмотках двигателя дополняется до обычной трёхфазной системы.

Значит, трёхфазный электродвигатель от однофазной сети можно не только использовать для эксплуатации нагрузки, но и питать от него другой трёхфазный электродвигатель.

Пример: в 1915 году в США для питания тяговых электродвигателей электровозов использовали расщепители фаз — два двигателя по 600 kw.

Конструктивно всё просто. Как обычный трёхфазный электродвигатель запускаете расщепитель от однофазной сети. Затем трёхполюсным выключателем подключаете к нему трёхфазный двигатель.

Читать еще:  В какую сторону вращается двигатель мотоцикла урал

Требовательность к асинхронным расщепителям значительная. Обороты ротора расщепителя должны быть выше, чем у питаемого ним электродвигателя. Мощность немного выше потребляемой мощности нагрузкой.

Все вышеперечисленные способы запуска трёхфазного электродвигателя можно отменить, при наличии в кармане определённой суммы денег, ведь нынешний прогресс в технике облегчил условия использования трёхфазных электродвигателей в однофазных сетях. Я говорю об электронных частотных преобразователях, которые напрямую подключаются к однофазной сети.

Переменное сетевое напряжение в таком преобразователе сначала выпрямляется и становится постоянным. Это постоянное напряжение через специальный блок или модуль преобразуется в переменное, нужной нам частоты. Далее переменное напряжение через электронные ключи подаётся на три обмотки трёхфазного электродвигателя.

Двойной выигрыш: возможность управления частотой вращения вала электродвигателя и не используем никаких фазосдвигающих элементов. Частотный преобразователь в данном случае является фазосдвигающим управляющим устройством, с комплексной защитой и другими дополнительными функциями.

К слову дополню, что таким преобразователем частоты удобно управлять электроинструментом, в котором в качестве привода используется синхронный электродвигатель.

Как подключить асинхронный двигатель

Простые способы включения трехфазных двигателей в однофазную сеть

Всякий асинхронный трехфазный двигатель рассчитан на два номинальных напряжения
трехфазной сети 380 /220 — 220/127 и т. д. Наиболее часто встречаются двигатели 380/220В.
Переключение двигателя с одного напряжения на другое производится подключением обмоток «на
звезду» — для 380 В или на «треугольник» — на 220 В. Если у двигателя имеется колодка
подключения, имеющая 6 выводов с установленными перемычками, следует обратить внимание в
каком порядке установлены перемычки. Если у двигателя отсутствует колодка и имеются 6 выводов
— обычно они собраны в пучки по 3 вывода. В одном пучке собраны начала обмоток, в другом концы
(начала обмоток на схеме обозначены точкой).

В данном случае «начало» и «конец» — понятия условные, важно лишь чтобы направления намоток
совпадали, т. е. на примере «звезды» нулевой точкой могут быть как начала, так и концы обмоток, а
в «треугольнике» — обмотки должны быть соединены последовательно, т. е. конец одной с началом
следующей. Для правильного подключения на «треугольник» нужно определить выводы каждой
обмотки, разложить их попарно и подключить по след. схеме:

Если развернуть эту схему, то будет видно, что катушки подключены «треугольником».
Если у двигателя имеется только 3 вывода, следует разобрать двигатель: снять крышку со
стороны колодки и в обмотках найти соединение трёх обмоточных проводов (все остальные
провода соединены по 2). Соединение трёх проводов является нулевой точкой звезды. Эти 3
провода следует разорвать, припаять к ним выводные провода и объединить их в один пучок. Таким
образом мы имеем уже 6 проводов, которые нужно соединить по схеме треугольника. Если имеется
6 выводов, но не объединены в пучки и не имеется возможности определить начала и концы.
можно посмотреть здесь.
Трехфазный двигатель вполне успешно может работать и в однофазной сети, но ждать от
него чудес при работе с конденсаторами не приходится. Мощность в самом лучшем случае будет не
более 70% от номинала, пусковой момент сильно зависит от пусковой емкости, сложность подбора
рабочей емкости при изменяющейся нагрузке. Трехфазный двигатель в однофазной сети это
компромис, но во многих случаях это является единственным выходом.
Существуют формулы для рассчета емкости рабочего конденсатора, но я считаю их не
корректными по следующим причинам:
1. Рассчет производится на номинальную мощность, а двигатель редко работает в таком
режиме и при недогрузке двигатель будет греться из-за лишней емкости рабочего конденсатора и
как следствие увеличенного тока в обмотке.
2. Номинальная емкость конденсатора указаная на его корпусе отличается от фактической +
/- 20%, что тоже указано не конденсаторе. А если измерять емкость отдельного конденсатора, она
может быть в два раза большей или на половину меньшей. Поэтому я предлагаю подбирать емкость
к конкретному двигателю и под конкретную нагрузку, измеряя ток в каждой точке треугольника,
стараясь максимально выравнять подбором емкости. Поскольку однофазная сеть имеет
напряжение 220 В, то двигатель следует подключать по схеме «треугольник». Для запуска
ненагруженного двигателя можно обойтись только рабочим конденсатором.

Направление вращения двигателя зависит от подключения конденсатора (точка а) к точке б
или в.
Практически ориентировочную ёмкость конденсатора можно определить по сл. формуле: C
мкф = P Вт /10, где C – ёмкость конденсатора в микрофарадах, P – номинальная мощность
двигателя в ваттах. Для начала достаточно, а точная подгонка должна производиться после
нагрузки двигателя конкретной работой. Рабочее напряжение конденсатора должно быть выше
напряжения сети, но практика показывает, что успешно работают старые советские бумажные
конденсаторы рассчитаные на 160В. А их найти значительно легче, даже в мусоре.
У меня мотор на сверлилке работает с такими конденсаторами, расположеными для защиты
от хлопка в заземленной коробке от пускателя не помню сколько лет и пока все цело. Но к такому
подходу я не призываю, просто информация для размышления. Кроме того, если включить 160и
Вольтовые конденсаторы последовательно, вдвое потеряем в емкости зато рабочее напряжение
увеличится вдвое 320В и из пар таких конденсаторов можно собрать батарею нужной емкости.
Включение двигателей с оборотами выше 1500 об/мин, либо нагруженных в момент пуска,
затруднено. В таких случаях следует применить пусковой конденсатор, ёмкость которого зависит от
нагрузки двигателя, подбирается экспериментально и ориентировочно может быть от равной
рабочему конденсатору до в 1,5 – 2 раза большей. В дальнейшем, для понятности, все что
относится к работе будет зеленого цвета, все что относится к пуску будет красного, что к
торможению синего.

Читать еще:  Большие обороты холостого хода на прогретом двигателе

Включать пусковой конденсатор в простейшем случае можно при помощи нефиксированной
кнопки.
Для автоматизации пуска двигателя можно применить реле тока. Для двигателей
мощностью до 500 Вт подойдёт реле тока от стиральной машины или холодильника с небольшой
переделкой. Т. к. конденсатор остаётся заряженным и в момент повторного запуска двигателя,
между контактами возникает довольно сильная дуга и серебряные контакты свариваются, не
отключая пусковой конденсатор после пуска двигателя. Чтобы этого не происходило, следует
контактную пластинку пускового реле изготовить из графитовой или угольной щётки (но не из медно-
графитовой, т. к. она тоже залипает). Также необходимо отключить тепловую защиту этого реле,
если мощность двигателя превышает номинальную мощность реле.
Если мощность двигателя выше 500 Вт, до 1,1кВт можно перемотать обмотку пускового реле
более толстым проводом и с меньшим количеством витков с таким расчётом, чтобы реле
отключалось сразу же при выходе двигателя на номинальные обороты.
Для более мощного двигателя можно изготовить самодельное реле тока, увеличив размеры
оригинального.
Большинство трехфазных двигателей мощностью до трех кВт хорошо работают и в
однофазной сети за исключением двигателей с двойной беличьей клеткой, из наших это серия МА,
с ними лучше не связываться, в однофазной сети они не работают.

Практические схемы включения

Работает схема следующим образом: при переводе переключателя в положение 3 и
нажатии на кнопку К1 происходит пуск двигателя, после отпускания кнопки остается только рабочий
конденсатор и двигатель работает на полезную нагрузку. При переводе переключателя в положение
1, на обмотку двигателя подается постоянный ток и двигатель тормозится, после остановки
необходимо перевести переключатель в положениие 2, иначе двигатель сгорит, поэтому
переключатель должен быть специальным и фиксироваться только в положении 3 и 2, а положение
1 должно быть включено только при удержании. При мощности двигателя до 300Вт и
необходимости быстрого торможения, гасяший резистор можно не применять, при большей
мощности сопротивление резистора подбирается по желаемому времени торможения, но не должно
быть меньше сопротивления обмотки двигателя.

Эта схема похожа на первую, но торможение здесь происходит за счет энергии запасенной в
электролитическом конденсаторе С1 и время торможения будет зависить от его емкости. Как и в
любой схеме пусковую кнопку можно заменить на реле тока. При включении переключателя в сеть
двигатель запускается и происходит заряд конденсатора С1 через VD1 и R1. Сопротивление R1
подбирается в зависимости от мощности диода, емкости конденсатора и времени работы двигателя
до начала торможения. Если время работы двигателя между пуском и торможением превышает 1
минуту, можно использовать диод КД226Г и резистор 7кОм не менее 4Вт. рабочее напряжение
конденсатора не менее 350В Для быстрого торможения хорошо подходит конденсатор от
фотовспышки, фотовспышек много, а нужды в них больше нет. При выключении переключатель
переходит в положение замыкающее конденсатор на обмотку двигателя и происходит торможение
постоянным током. Используется обычный переключатель на два положения.

Читать еще:  Шевроле лачетти защита двигателя своими руками

Еще одна не совсем обычная схема автоматического включения.
Как и в других схемах здесь есть система торможения, но ее при ненадобности легко
выкинуть. В этой схеме включения две обмотки соединены паралельно, а третья через систему
пуска и вспомогательный конденсатор, емкость которого примерно в два раза меньше необходимого
при включении треугольником. Для изменения направления вращения нужно поменять местами
начало и конец вспомогательной обмотки, обозначеной красной и зеленой точками. Запуск
происходит за счет зарядки конденсатора С3 и продолжительность запуска зависит от емкости
конденсатора, а емкость должна быть достаточно велика, чтобы двигатель успел выйти на
номинальные обороты. Емкость можно брать с запасом, так как после заряда конденсатор не
оказывает заметного действия на работу двигателя. Резистор R2 нужен для разрядки конденсатора
и тем самым подготовки его для следующего пуска, подойдет 30 кОм 2Вт. Диоды Д245 — 248
подойдут любому двигателю. Для двигателей меньшей мощности соответственно уменьшится и
мощность диодов, и емкость конденсатора. Хоть и затруднительно сделать реверсивное включение
по данной схеме, но при желании и это можно. Потребуется сложный переключатель или пусковые
автоматы.

Использование электролитических конденсаторов в качестве пусковых и рабочих

Стоимость неполярных конденсаторов достаточно высока, да и не везде их можно найти.
Поэтому, если их нет, можно применить электролитические конденсаторы, включенные по схеме не
намного сложнее. Емкость их достаточно велика при небольшом объеме, они не дефицитны и не
дороги. Но нужно учесть вновь возникшие факторы. Рабочее напряжение должно быть не менее
350 Вольт, включаться они могут только парами, как указано на схеме черным цветом, а в таком
случае емкость уменьшается вдвое. И если двигателю для работы нужно 100 мкФ, то конденсаторы
С1 и С2 должны быть по 200мкФ.
У электролитических конденсаторов большой допуск по емкости, поэтому лучше собрать
батарею конденсаторов (обозначена зеленым цветом), легче будет подбирать фактическую емкость
нужную двигателю и кроме того у электролитов очень тонкие выводы, а ток при большой емкости
может достигать значительных величин и выводы могут греться, а при внутреннем обрыве вызвать
взрыв конденсатора. Поэтому вся батарея конденсаторов должна находиться в закрытой коробке,
особенно во время экспериментов. Диоды должны быть с запасом по напряжению и по току,
необходимому для работы. До 2кВт вполне подойдут Д 245 — 248. При пробое диода сгорает (
взрывается) конденсатор. Взрыв конечно сказано громко, пластмассовая коробка вполне защитит от
разлета деталей конденсатора и от блестящего серпантина тоже. Ну вот, страшилки рассказаны,
теперь немного о конструкции.
Как видно из схемы, минусы всех конденсаторов соединены вместе и, стало быть,
конденсаторы старой конструкции с минусом на корпусе можно просто плотно перемотать
изолентой и поместить в пластмассовую коробку соответствующих размеров. Диоды нужно
расположить на изоляционной пластинке и при большой мощности поставить их на небольшие
радиаторы, а если мощность не велика и диоды не греются, то их можно поместить в ту же коробку.
Включенные по такой схеме электролитические конденсаторы, вполне успешно работают как
пусковыми так и рабочими.

Включение пускового конденсатора при помощи реле тока.

Из теории известно, что пусковой ток в несколько раз превышает номинальный ток рабочего
двигателя, поэтому включение пускового конденсатора при включении трехфазного двигателя в
однофазную сеть, можно осуществить автоматически, — при помощи реле тока.
Для двигателей до 0,5 кВт подойдёт пусковое реле от холодильника, стиральной машины
типа РП-1, с небольшой переделкой. Подвижные контакты надо заменить на графитовую или
угольную пластинку, выточенную из щётки коллекторного двигателя, по размерам оригинала. Т. к.
при повторном включении, ток заряженного конденсатора даёт большую искру на контактах, и
стандартные контакты свариваются между собой. При применении графита, такого явления не
наблюдалось. (Кроме того, следует отключить термореле).
Для двигателей до 1 кВт можно перемотать РП-1 проводом Ф1,2мм до заполнения катушки
40-45 витков.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector