Ecoparcovka.ru

ЭкоПарковка СТО
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое коллектор двигателя постоянного тока

Двигатель постоянного тока

Двигатель постоянного тока — это электродвигатель, запитанный от постоянного тока (+ и -). Данные двигатели применяются в электроприводах, требующих большой диапазон регулирования скорости, большой точности поддержания скорости вращения привода, регулирования скорости вверх от номинальной.

  1. Устройство электродвигателей постоянного тока
  2. Коммутация в электродвигателях постоянного тока
  3. Пуск двигателей постоянного тока
  4. Торможение электродвигателей постоянного тока

ГОСТ 28295-89 Коллекторы электрических вращающихся машин. Общие технические условия

Группа Е60 СТАНДАРТ

МЕЖГОСУДАРСТВЕННЫЙ

КОЛЛЕКТОРЫ ЭЛЕКТРИЧЕСКИХ ВРАЩАЮЩИХСЯ МАШИН

Общие технические условия

Collectors of electrical rotating machines. General specifications

MKC 29.160.10 ОКП 33 0000

Дата введения 01.07.90

Настоящий стандарт распространяется на цилиндрические коллекторы с наружным диаметром от 50 до 710 мм с изоляцией класса нагревостойкости В и F, работающие при номинальном напряжении до 660 В.

Стандарт не распространяется на коллекторы для тяговых машин и коллекторы, применяемые в автомобильной и авиационной промышленности.

1. ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ

Термины и определения коллекторов — по ГОСТ 21888. Пояснения к терминам, применяемым в настоящем стандарте, приведены в приложении.

2. РАЗМЕРЫ

2.1. Диаметр коллектора D (см. чертеж) выбирают из ряда по ГОСТ 19780.

2.2. Номинальные размеры изоляции коллекторных пластин — по ГОСТ 24680. В обоснованных случаях можно выбирать изоляцию коллекторных пластин других размеров.

© Издательство стандартов, 1990 © Стандартинформ, 2006

2.3. Размеры пластин для коллекторов рассчитывают по ГОСТ 27660. В обоснованных случаях можно выбирать пластины других размеров.

2.4. Предельные отклонения диаметра D и размера X должны соответствовать указанным в табл. 1.

Предельное отклонение размера X

2.5. Предельные отклонения отверстия d для установки коллектора на валу ротора должны соответствовать полю допуска Н7 по ГОСТ 25347.

2.6. Предельное отклонение номинальной толщины изоляции коллекторных пластин в изготовленном коллекторе должно быть ±0,15 мм при номинальной толщине изоляции коллекторной пластины до 1 мм и ± 0,2 мм — при толщине изоляции свыше 1 мм.

2.7. В технически обоснованных случаях допускается изготовлять коллекторы с предельным отклонением номинальной толщины изоляции коллекторных пластин ±0,1 мм при номинальной толщине изоляции коллекторной пластины до 1 мм.

2.8. Допуск параллельности пластин относительно оси коллектора не должен превышать значений, указанных в табл. 2.

2.9. Разность максимального и минимального шагов коллекторных пластин не должна превышать 1 мм. Коллекторный шаг определяют по сумме шагов коллекторных пластин, расположенных приблизительно на одной четвертой части контура контактной поверхности коллектора.

2.10. Биение коллектора до установки на вал якоря не должно превышать 0,2 мм.

2.11. Предельные отклонения свободных размеров коллектора — по ГОСТ 30893.1.

2.12. Коллекторы изготавливают с обработанной контактной поверхностью. На контактной поверхности могут быть закреплены контрольные ленты для измерения перепада высот пластин шириной около 10 мм.

2.13. Допустимый износ диаметра коллектора D определяет изготовитель и указывает в сопроводительной документации. Граница допустимого износа коллектора определена D2.

В пределах номинальной тол-

щины изоляции коллекторной

пластины в коллекторе

3. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

3.1. Требования к условиям эксплуатации

3.1.1. Коллекторы с изоляцией для класса нагревостойкости В по ГОСТ 8865 предназначены для работы при температуре от минус 40 °С до плюс 130 °С, а коллекторы с изоляцией для класса нагревостойкости F — от минус 40 °С до плюс 155 °С при номинальном напряжении, номинальном токе и номинальной частоте вращения.

3.1.2. Коллекторы могут быть изготовлены вида климатического исполнения У2 или Т2 по ГОСТ 15150.

3.1.3. Исполнение коллекторов для других условий эксплуатации (например для других климатических условий, химических цехов) должно соответствовать исполнению машин, работающих в данной среде, и должно быть указано в договоре.

3.2. Требования к материалам

3.2.1. Пластины изготовляют из материалов, которые должны иметь твердость согласно табл. 3.

Твердость, кгс/мм 2

Материал 1: Си — ЕТР (электролитическая напряженная медь).

Си — ЕРНС (медь отожженная с высокой проводимостью).

Си — OF (бескислородная медь).

Материал 2: Си — LSTP (отожженная электролитическая медь с низким содержанием серебра).

Материал 3: Си — OFS (бескислородная медь с содержанием серебра).

По согласованию с потребителем допускается использование для пластин материала, отличного от указанного в табл. 3.

3.2.2. Материал частей коллектора, кроме пластин, и способы предохранения поверхности коллекторов, учитывая функцию и окружающую среду, для которой коллектор предназначен, выбирает изготовитель.

3.3. Требования к конструкции

3.3.1. Выступающие концы манжет коллекторов, скрепленных болтами, должны быть банда-жированы или замазаны. Конечная отделка выступающих концов манжет производится после обмотки и пропитки якоря.

Читать еще:  Что такое кубики в двигателе внутреннего сгорания

3.3.2. Соединительные детали коллекторов, скрепленных болтами, должны быть зафиксированы.

3.4. Требования к изоляции

3.4.1. Сопротивление изоляции коллекторов в холодном состоянии должно быть не менее 50 МОм, в горячем состоянии — не менее 5 МОм.

3.4.2. Сопротивление изоляции коллекторов в климатическом исполнении Т2 после воздействия влажности при повышенной температуре в циклическом режиме должно быть не менее 2 МОм для электрических машин номинальной мощности до 500 Вт и 1 МОм — для электрических машин номинальной мощностью свыше 500 Вт.

3.4.3. Испытательное напряжение для проверки электрической прочности коллекторов приведено в табл. 4.

Номинальное напряжение электрической машины, В

Испытательное напряжение, В

Каждая пластина к соседней пластине

Каждая пластина ко всем пластинам, кроме двух соседних*

Комплект пластин короткозамкнутых к металлической втулке в электрических машинах мощностью: до 1 кВт

Продолжение табл. 4

Номинальное напряжение электрической машины, В

Испытательное напряжение, В

* Испытание проводят только для коллекторов на пластмассе со стальными армировочными кольцами.

3.5. Требования устойчивости к климатическим и механическим воздействиям

3.5.1. У коллекторов, предназначенных для атмосферы типа 3 по ГОСТ 15150, коррозия на металлических поверхностях не должна превышать 4 баллов по методу С ГОСТ 9.308.

3.5.2. При воздействии пониженной температуры (минус 40 °С) коллектор не должен иметь механических повреждений, а перепад высот смежных пластин не должен превышать 6 мкм.

3.5.3. При воздействии температуры не более 130 °С для коллектора с изоляцией класса на-гревостойкости В или не более 155 °С для коллектора с изоляцией класса нагревостойкости Г на коллекторе не должно быть механических повреждений, а перепад высот смежных пластин не должен превышать 6 мкм.

3.5.4. Коллекторы климатического исполнения Т2 должны быть стойкими к воздействию плесневых грибов. Интенсивность роста плесневых грибов после испытаний не должна превышать 3 балла по ГОСТ 9.048.

3.5.5. Коллектор должен быть механически стойким к воздействию центробежной силы и температуры. После проведения центробежных испытаний на коллекторе не должно быть механических повреждений, а перепад высот смежных пластин не должен превышать 6 мкм.

Выступание пластин измеряют после охлаждения до температуры окружающей среды.

3.6. Требования к сборке и обработке коллектора у потребителя

3.6.1. Коллектор насаживают на вал плавным прижимным усилием на втулку. Максимальная температура подогрева для коллекторов с изоляцией класса нагревостойкости В должна быть 130 °С, для коллекторов с изоляцией класса нагревостойкости F — 155 °С. Если нет возможности воздействовать прижимным усилием на втулку, например у коллекторов, скрепленных болтами с двумя зажимными кольцами, разрешается воздействовать на зажимное кольцо с усилием, которое не должно превышать усилия, указанного в сопроводительной документации на коллектор.

При насаживании коллектора на вал не допускается деформация, которая вызывает выступание пластин.

3.6.2. При фрезеровании пазов и вкладывании обмоток в пазы нельзя допускать нарушения комплекта пластин и допускать его деформацию.

3.6.3. При впайке обмоток в пазы пластин коллектора температура комплекта пластин в области пайки должна быть не более 230 °С. Продолжительность пайки не должна повлиять на механические свойства пластин. Температура несущей конструкции от 120 °С до 170 °С.

3.6.4. При пропитке ротора температура коллектора с изоляцией класса нагревостойкости В не должна превышать 130 °С, коллектора с изоляцией класса нагревостойкости F — 155 °С.

3.6.5. После насадки коллектора на вал и соединения обмоток необходимо охлажденный коллектор, скрепленный болтами, затянуть с усилием, соответствующим указанному в сопроводительном документе на коллектор. Затем у коллектора, скрепленного болтами, фиксируют соединительные детали от ослабления. Последней операцией является обработка наружного диаметра коллектора D до номинального размера.

3.6.6. Для других способов соединения обмоток с пластинами коллектора (например сваркой) условия обработки изменяются.

3.7. Условное обозначение коллектора должно содержать следующие данные:

1) товарный знак предприятия-изготовителя;

2) номер сборочного чертежа;

3) вид исполнения для сложных климатических условий (Т2);

4) класс нагревостойкости изоляции F;

5) декаду и год изготовления.

3.8. Для изготовления коллектора необходимы следующие данные:

1) основные размеры по чертежу (D, D, D2, d, L, L, L2, X, P, T, Z, h);

2) число пластин;

3) род тока (постоянный или переменный);

4) номинальное напряжение коллектора;

5) номинальная мощность электрической машины;

6) номинальная частота вращения;

7) толщина изоляционных пластин коллектора;

8) класс нагревостойкости изоляции;

9) вид климатического исполнения;

10) способ соединения токопроводов с коллектором;

11) особые требования.

П римечание. Коллекторы вида климатического исполнения Т2 и коллекторы с изоляцией класса нагревостойкости В в обозначении не указывают.

Читать еще:  Вибрация двигателя на холостом ходу 2az

3.9. Коллекторы должны быть упакованы таким образом, чтобы во время транспортирования, погрузки и выгрузки они не были повреждены.

3.10. В сопроводительной документации должны быть указаны следующие данные:

1) обозначение предприятия-изготовителя;

2) обозначение типа коллектора, принятое на предприятии-изготовителе;

3) количество коллекторов;

4) дата упаковки;

5) знак контроля качества.

3.11. Показатели надежности устанавливают в технических условиях на конкретные виды коллекторов.

4. ПРИЕМКА

4.1. Порядок и объем типовых испытаний коллекторов должен соответствовать указанным в табл. 5.

Коллекторный и бесколлекторный двигатель

Чем отличаются коллекторные двигатели от бесколлекторных, главные преимущества и недостатки обоих типов.

В инженерном деле не существует идеальных решений, возможно, найти только оптимальное решение для конкретной прикладной задачи. Возможные технические решения для управления движением широко варьируются в зависимости от задач — от устройств для исследования космоса, где стоимость является несущественной и требуется абсолютная надежность работы, до скоростных упаковочных линий, которые работают в круглосуточном режиме без выходных. К счастью, команды разработчиков имеют множество вариантов для выбора. Одно из ключевых решений, которое нужно принять — использовать коллекторный или бесщеточный электродвигатель постоянного тока. Для этого нужно понять чем отличаются коллекторные двигатели от бесколлекторного аналога.

Щеточные электродвигатели постоянного тока

Прежде чем перейти к рассмотрению за и против, давайте рассмотрим конструкцию электродвигателя. Электродвигатель состоит из ротора (также называемого якорем) и статора. Хотя также существуют некоторые вариации, когда двигатели со стационарным ротором и вращающимся статором, для целей этой статьи давайте ограничимся обсуждением двигателя со стационарным статором, окружающим центральный вращающийся ротор. Статор состоит из пары постоянных магнитов с противоположным расположением полюсов, а ротор — из перекладины, обмотанной проволокой в противоположных направлениях с каждой стороны (см. Рис. 1). Когда обе катушки подключены к источнику питания, они действуют как электромагниты с противоположными полярностями.

Электродвигатели работают за счет сил Лоренца, которые возникают при прохождении электрического тока через обмотки, расположенные в магнитном поле. Воздействие этих сил заставляет ротор поворачиваться вокруг своей оси. Крутящий момент, создаваемый силой Лоренца, является векторным произведением, что означает, что когда полюса электромагнитов, образованных обмотками ротора, выровнены с противоположными полюсами магнитов статора, сила падает до нуля, а ротор прекращает вращение.

Однако изменение направления тока в обмотках приведет к изменению полярности электромагнитов. Сила будет восстановлена и ротор возобновит движение. Если это изменение будет происходить каждый раз, при прохождении вертикали статора, ротор будет продолжать вращаться и выполнять полезную работу.
Для изменения направления тока с контролируемой частотой, щеточным двигателям постоянного тока требуют коллектор. Коллектор — это разделенное на сегменты кольцо соответствующим образом подключенное к каждой из обмоток ротора. Когда ротор вращается — тоже происходит и с коллектором. Для того чтобы подвести ток к коллектору к нему с противоположных сторон прижимается пара неподвижных щеток (см. Рис. 2). Когда коллектор/ротор поворачивается, каждый сегмент коллектора последовательно контактирует сначала с одной щеткой/источником тока, а затем с другой. В результате ток в роторных катушках меняется каждый раз при повороте ротора на 180°, поддерживая вращение двигателя.

Это очень простая модель, представленная для примера. Как поясняется в учебном пособии, из практических соображений — щеточные двигатели постоянного тока обычно имеют три или более фаз.
Щетки могут быть изготовлены из различных материалов: сплавы на основе углерода, такие как графит-медь или графит-серебро, драгоценные металлы — золото, серебро или платина. Выбор подходящего материала щеток – зависит от конкретной прикладной задачи.

Графитовые щетки изготавливают из цельных кусков графита. Щетки из графита являются самосмазывающимися и достаточно прочными. Они подходят для больших двигателей, работающих на высокой скорости (выше 1000 об/мин). Недостатком графитовых щеток является то, что они со временем образовывают мусор, который может загрязнить коллектор и привести к сбоям в работе двигателя. Очень важно, чтобы такие щетки использовались при достаточно высоких скоростях для очистки от загрязнений.
Щетки из драгоценных металлов состоят из отдельных нитей, что делает их более хрупкими, чем щетки на основе графита. В тоже время щетки из драгоценных металлов обеспечивают лучшую производительность при более низком электрическом шуме и звуковом загрязнении. Они более компактны и эффективны в приложениях с низким рабочим циклом. Они также хорошо подходят для низковольтных систем, потому что падение напряжения между коллектором и щеткой имеет тенденцию быть низким. С другой стороны, они не обладают эффектом самосмазывания, что приводит к большему износу и необходимости использования внешних смазочных материалов.

Читать еще:  Что такое кратковременный режим работы двигателя

Бесщеточные или коллекторные двигатели — За и против

Чтобы в полной мере понять чем отличается коллекторный двигатель от бесколлекторного, стоит взвесить все преимущества и недостатки обоих типов. Щеточные электродвигатели постоянного тока являются лучшим решением в области управления движением. Они экономичны и просты в использовании. Поскольку им не требуется встроенная электроника, они могут выдерживать экстремальные условия. При условии, что щетки выбраны правильно и своевременно обслуживаются, щеточные двигатели постоянного тока могут служить длительное время. Они хорошо подходят для применения в устройствах с умеренными и низкими скоростями.

Щеточные двигатели требуют квалифицированной эксплуатации. Прохождение определенной плотности тока, к примеру, приводит к выгоранию щеток. При избыточной скорости щетки могут слетать с коллектора. Для применения щеточных двигателей на высоте может потребоваться специальное обслуживание – как-то применение таких присадок, как дисульфид молибдена или карбонат лития.

Необходимость в коллекторе и щетках увеличивает размер двигателя. Щетки требуют регулярного обслуживания, поэтому двигатели должны находиться в доступном месте. Поскольку ротор с обмотками находится внутри (статора), щеточные двигатели могут рассеивать тепло только через воздушный зазор, что усложняет задачу теплообмена. Падение напряжения на щетках снижает эффективность щеточных двигателей.

Наконец, трение щеток о контакты коллектора дополнительно снижает эффективность и создает слышимый шум. Трение приводит к уменьшению крутящего момента на высоких скоростях. Кроме выше приведенных недостатков трение щеток о коллектор также может вызвать появление дуги и увеличение электромагнитных помех (EMI); а в худшем случае, могут генерироваться искры, что делает щеточные электродвигатели постоянного тока непригодными для использования во взрывоопасных средах.

Бесколлекторные двигатели постоянного тока (Вентильные двигатели)

Альтернативой являются бесколлекторные двигатели постоянного тока (BLDC) (Вентильные двигатели (ВД)) или двигатели с электронным коммутатором (ECM). Двигатели BLDC представляют собой синхронные двигатели с постоянными магнитами. Они могут работать как серводвигатели, а также как шаговые двигатели. Это определение также включает двигатели с переключением сопротивлением. С целью сравнения рассмотрим конструкцию двигателя BLDC, которая представляет собой коллекторный двигатель постоянного тока, вывернутый наизнанку. Постоянные магниты установлены на роторе, а статор состоит из ламинированной рамы с катушками. В результате ротор не нуждается в какой-либо проводке, и двигатель не нуждается в коллекторе и щетках.

Хотя двигатели BLDC классифицируются как двигатели постоянного тока и запитываются от источника постоянного тока, они имеют много общего с двигателями переменного тока. Чтобы поддерживать поворот ротора, обмотки статора должны запитываться последовательно; принципиально, это выглядит как импульсный источник тока, как правило, с синусоидальной формой сигнала, когда используется для сервомоторного управления. Для согласования распределения магнитного поля, генерируемое обмотками статора, с распределением магнитного поля ротора, в BLDC двигателях контролируеться угловое положение ротора, как правило, при помощи датчиков Холла. Эта обратная связь используется для управления переключением тока на обмотках.

Поскольку в двигателях BLDC не применяются щетки и коллекторы, они более компактны, чем коллекторные двигатели. Они обеспечивают более высокую производительность в одном типоразмере. Отсутствие щеток снижает необходимость обслуживания и позволяет ротору вращаться на более высоких скоростях. Отсутствие трения выравнивает кривую скорость/крутящий момент, устраняет вероятность искрения и снижает электромагнитное помехи (EMI). Перемещение теплогенерирующих обмоток наружу упрощает теплоотвод. Этот подход также снижает инерционность ротора, позволяя сервомоторам BLDC обеспечивать лучший динамический отклик. Отсутствие падения напряжения на щетках также повышает эффективность BLDC двигателей.

С другой стороны, двигатели BLDC сложнее, чем их коллекторные аналоги. Использование встроенной электроники значительно увеличивает их стоимость.

Как обсуждалось в начале этой статьи, выбор типа двигателя обуславливается требованиями, которые к нему выставляются. Проект с ограниченным бюджетом и с умеренными требованиями к характеристикам двигателя может отлично быть реализован с использованием коллекторного двигателя постоянного тока. Если для проекта более важными являются производительность и рабочий цикл BLDC двигатель может быть лучшим решением. Оригинальный производитель оборудования и конечные пользователи должны учитывать не только возможности двигателя, но и возможности своего персонала по инсталляции и обслуживанию оборудование. Эффективное техническое решение может быть принято только при обоснованном выборе оборудования.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector