Ecoparcovka.ru

ЭкоПарковка СТО
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое динамический режим работы двигателя

EXP4000 Анализатор двигателей динамический SKF

Анализатор двигателей динамический SKF BAKER EXPLORER 4000

Прибор Baker EXPLORER 4000 позволяет выполнить большое количество тестов для определения неисправностей электрического оборудований (качество питания, повреждение электрической части, повреждения механический компонентов).

Заказ приборов для диагностики электродвигателей

Для заказа приборов звоните +7 (495)223-07-69
Пишите mail@indpart.ru
Наши специалисты готовы ответить как на технические, так и на коммерческие вопросы

EXP4000 характеризуется широкими функциональными возможностями для тестирования электродвигателей и отвечает самым высоким стандартам качества. EXP4000 разработан специально для контроля за силовыми цепями, общим состоянием двигателя, его нагрузкой и производительностью непосредственно на производстве и позволяют оператору проводить комплексный анализ общей функциональности двигателя.

Анализаторы двигателей обеспечивают возможность удаленного мониторинга через EP-соединение компании Baker. Питание к ним подается от аккумуляторной батареи. Устройства безопасны в работе и обладают высокой надежностью даже в самых сложных условиях.

Анализатор двигателей EXP4000 выявляет снижение производительности электродвигателей и тем самым помогает сокращать непроизводительные затраты, а также определять общую эффективность использования оборудования, рассогласование нагрузки, колеблющуюся нагрузку и кратковременную пиковую нагрузку. Оператор получает результаты незамедлительно, что дает возможность рассчитать рабочую эффективность и точные значения потерь энергии.

Анализатор выполняет функции, которые помогают улучшить профилактическое обслуживание электродвигателей.

  • Выявляет возможные проблемы силовой сети, которые ухудшают состояние электродвигателя,
  • Проверяет режим работы двигателей
  • Отслеживает нагрузку
  • Контролирует производительность электродвигателей
  • Рассчитывает возможное энергосбережение.

Программа, заложенная в EXP4000, выдает информацию

  • об уровне напряжения
  • балансе напряжений
  • нелинейном и полном искажении
  • состоянии ротора
  • производительности двигателя
  • эксплуатационном коэффициенте полезного действия
  • уровне перегрузки по току
  • рабочем состоянии
  • изменениях крутящего момента
  • нагрузке в сопоставлении с другими двигателями

Все эти данные в совокупности позволяют определить истинное состояние электродвигателя и условия, влияющие на производительность двигателя.

Схематично процесс можно описать следующим образом:

  1. Обмотки переключаются на работу в противоположном направлении.
  2. Ротор продолжает работу в привычном состоянии (по инерции).
  3. Скольжение превышает единицу, момент становится отрицательным.

Применять этот способ торможения нужно осторожно, в противном случае через некоторое время вам потребуется ремонт электродвигателя.

Если у вас двигатель постоянного тока, то схема работы может быть несколько иной: для начала процесса торможения требуется изменение подключения концов обмоток.

Какой бы вы вариант ни выбрали, вам важно помнить, что тормозной режим противовключения имеют следующие особенности:

  • Напряжение сильно растет, поэтому позаботьтесь о подключении резисторов.
  • Энергия торможения (а на первых этапах она очень серьезная) постепенно начинает растворяться в тормозных резисторах или же в обмотках электродвигателя.

Для чего и каким образом используется режим динамического торможения?

Схема динамического торможения выглядит примерно следующим образом:

  1. Вы принимаете соответствующее решение.
  2. Вы отключаете якорь двигателя постоянного тока от источника питания.
  3. Через некоторое время после этого вы включаете работу на сопротивление.
  4. В такой ситуации обмотка возбуждения будет оставаться под серьезным напряжением.

Как и другие способы торможения, динамическое требует внимательности и осторожности. Помните о том, что постоянный ток обладает физическим свойством создавать вокруг себя неподвижное магнитное поле. Когда вы запускаете вращение ротора, то просто начинается выработка тока. Когда ток от ротора соприкасается с неподвижным магнитным полем, получается эффект торможения.

ВНИМАНИЕ! Тормозной момент может быть разным на одном и том же оборудовании! Вам важно учитывать частоту вращения, особенности тока возбуждения, а также сопротивления цепи ротора (или же якоря).

Для чего и по каким причинам используется режим рекуперативного торможения?

При таком способе торможения электрическая машина автоматически превращается в генератор, который работает параллельно с сетью. В таком случае вся энергия, которая образуется в процессе торможения, просто уходит в электрическую сеть (за исключением потерь). Такой способ торможения зачастую применятся в подъемных кранах и в другом оборудовании; используется для обкатки и испытания двигателей; часто это решение необходимо для того, чтобы беспроблемно переходить с одной скорости на другую.

Читать еще:  Высокий уровень масла двигателе на холодную

Способы торможения электродвигателя могут быть различными. Схемы действия серьезно отличаются. Но если у вас все еще остались какие-то вопросы, то смело можете задавать их нашему специалисту. Мы работаем с полной отдачей, с душой и на совесть. Обращайтесь.

План тестирования дизельного двигателя

В тестировании дизеля участвуют наши инженеры службы эксплуатации и инженеры вендора. Во время ТО мы контролируем несколько параметров:

  • проверяем резиновые шланги и натяжение ремней генератора,
  • проверяем температуру замерзания и уровень охлаждающей жидкости,
  • контролируем исправность работы предпусковых подогревателей и состояние радиатора охлаждения двигателя,
  • проверяем напряжение заряда батарей, уровень и плотность электролита,
  • замеряем остаточную емкость и напряжение АКБ,
  • меняем фильтры и масло в двигателе,
  • проводим тест дизельного двигателя ДИБП при нагрузке мощностью 100 %.

Благодаря такой программе теста мы не только гарантируем, что ДИБП не подведет в критический момент, но и параллельно контролируем работу систем вентиляции и топливоснабжения.

Тестовый пуск двигателя ДИБП проводится при стопроцентной нагрузке. Когда мы в прошлый раз рассказывали про тестирование ДГУ, то показывали вариант тестирования с реальной нагрузкой. Двигатель ДИБП мы будем обслуживать и тестировать под эквивалентной нагрузкой. Создадим ее с помощью нагрузочных модулей: эти электромеханические устройства моделируют нагрузку нужной мощности.

Такой способ тестирования наиболее рационален для нашего случая. Во-первых, мы не зависим от сторонних нагрузок. ЦОД – это живой организм, и количество ИТ-нагрузок может меняться. Во-вторых, проведение теста не влияет на клиентское оборудование и инженерные системы. Даже если во время теста что-то пойдет не так, электроснабжение клиентского оборудования и инженерных систем ЦОДа не пострадает.

АВТОМАТИЗИРОВАННЫЙ ЭЛЕКТРОПРИВОД В ПРОКАТНОМ ПРОИЗВОДСТВЕ

ЧАСТОТНЫЕ МЕТОДЫ АНАЛИЗА

■Ч- В случае подачи на вход разомкнутой одноконтурной системы гармониче­ского колебания синусоидального типа с угловой частотой ш (для удобства сину­соидальную функцию, изображаемую на комплексной плоскости вектором, за­меняют показательной функцией с …

ОСОБЕННОСТИ ПЕРЕХОДНЫХ РЕЖИМОВ

В замкнутых системах автоматического управления под дей­ствием различных возмущений возникает переходный процесс, характеризующий переход системы из одного установившегося состояния к другому. Характер переходного процесса зависит от свойств и характеристик системы, …

ТИРИСТОРНЫЕ ПРЕОБРАЗОВАТЕЛИ ЧАСТОТЫ ДЛЯ РЕГУЛИРОВАНИЯ СКОРОСТИ ВРАЩЕНИЯ АСИНХРОННОГО ДВИГАТЕЛЯ

Электромашинные преобразователи частоты включают вра­щающиеся электрические машины, имеют механический метод управления частотой, громоздки в своем исполнении. Развитие силовой полупроводниковой техники привело к созданию регули­руемых электроприводов переменного тока, получающих питание от …

Механизмы подъема. Преобразователь частоты серии EI-9011 в частотно регулируемом приводе

Механизмы подъема груза с применением электропривода устанавливаются на всех грузоподъемных машинах. Их общая конструкция характерна не только для кранов и лифтов, но и для машин специального назначения, в которых направление вектора приложения силы от действия нагрузки может совпадать с направлением вращения ротора электродвигателя.

Самый простой вариант механизма — грузовая лебедка. Это машина для подъема грузов с помощью каната, навиваемого на барабан с зацепом в виде крюка.

Основная кинематическая схема механизма подъема

Электропривод механизма подъема

Самый распространенный электродвигатель для механизма подъема — это асинхронный электродвигатель с короткозамкнутым ротором. При простоте управления (прямой пуск) у него есть существенные недостатки:

  • большие пусковые токи,
  • большие динамические нагрузки при запуске.

Устранить их в какой-то мере позволяет применение электродвигателя с фазным ротором. Но появляется новый недостаток — громоздкое силовое коммутационное оборудование.

Наиболее высоких эксплуатационных показателей позволяет достичь применение частотно-регулируемого привода, а именно:

  • снизить пусковые токи до уровня номинального,
  • снизить динамические нагрузки до уровня расчетных,
  • плавно регулировать скорости вращения в широком диапазоне.
Читать еще:  Что такое удельный расход топлива бензинового двигателя

Применение ПЧ серии EI-9011 для управления механизмом подъема

При выборе преобразователя частоты «Веспер» прежде всего надо учитывать тип редуктора механизма подъема. Различают 2 основных типа:

  • цилиндрический,
  • червячный.

Различие этих редукторов в том, что цилиндрический — двухсторонний, т. е. крутящий момент передается как от входного вала к выходному, так и наоборот — от выходного вала к входному; а червячный — односторонний. Последний устанавливают реже — из-за низкого КПД и повышенного износа.

В механизмах подъема с червячным редуктором возможно применение любого преобразователя частоты «Веспер» серий EI, E3, E4, E5. Но применение ЧРП в таком механизме мы рассматривать не будем — из-за отсутствия особенностей его работы.

Для механизмов подъема с цилиндрическими редукторами рекомендуется применять преобразователи частоты серии EI-9011, благодаря наличию у них:

  1. Мощного центрального процессора, который позволяет создать программное обеспечение для векторного режима с высокими точностными характеристиками и широким функционалом.
  2. Двух векторных режимов: в разомкнутой системе и с датчиком обратной связи по скорости.
  3. Широкого диапазона регулировки скорости: 1/100 в обычном векторном режиме и 1/1000 — в векторном с обратной связью.
  4. Векторного режима с обратной связью, который обеспечивает М=100% практически при нулевой скорости вращения двигателя.

Ранее приведенная кинематическая схема механизма подъема оптимальна для управления от преобразователя частоты EI-9011. В составе механизма есть тормозное устройство (3), конструктивно не связанное ни с электродвигателем, ни с редуктором. Для него доступно независимое управление электрическим сигналом.

С преобразователем частоты структура будет иметь следующий вид:

Рассмотрим простейшую схему управления приводом грузовой лебедки с электродвигателем небольшой мощности — до 8 кВт:

Для такого применения достаточно, как правило, режима работы ПЧ «Векторный в разомкнутой системе».

Почему именно он? Потому что позволяет управлять вращением двигателя в более широком диапазоне скоростей, чем скалярный режим. Это особенно важно на нижней границе диапазона, где требуется обеспечить номинальный момент на валу двигателя при возможной минимальной скорости вращения. Чем меньше значение выходной частоты ПЧ, при которой двигатель начинает вращение и имеет номинальную нагрузку на своем валу, тем меньше динамическая (ударная) нагрузка на все части механизма подъема.

Программирование ПЧ серии EI-9011 для управления механизмом подъема

Для программирования ПЧ необходимо подключить его к сети силового электропитания 3Ф, 380 В, 50 Гц. Соответственно, и электродвигатель, с которым предполагается работа, тоже следует подключить к ПЧ. Программирование производится с собственного пульта управления.

Векторный режим работы предусматривает обязательную автонастройку ПЧ с применяемым электродвигателем. Проводить ее следует при каждой замене двигателя.

Важное примечание: в процессе автонастройки ПЧ определяет ряд параметров двигателя во время вращения последнего. Поэтому для корректного определения параметров вал двигателя должен быть свободным — на нем не должно быть лишней присоединенной массы.

После подачи напряжения питания в основном меню ПО надо выбрать раздел «Инициализация». В этом разделе:

  • Выполнить инициализацию (возврат значений всех параметров к заводским).
  • Выбрать режим работы — «Векторный в разомкнутой системе».
  • Определить уровень доступа к параметрам — «Расширенный».

Выбор других разделом меню и параметров производится аналогично.

Программирование можно выполнить и с помощью пульта управления ПЧ. Вся информация выводится на дисплей пульта в доступном виде и с комментариями на русском языке.

Следующий шаг: в основном меню ПО надо выбрать раздел «Автонастройка». В этом разделе следует выполнить все указания по вводу значений параметров двигателя и запустить процесс автонастройки. Если после его завершения на дисплее пульта управления нет сообщений об ошибках, следует перейти к программированию.

Далее в основном меню ПО надо выбрать раздел «Программирование». Перечень его параметров определяется следующими условиями:

  • Управление работой ПЧ (человек или АСУ).
  • Управление работой механизма со стороны ПЧ.
Читать еще:  Что означает слово контрактный двигатель

Для рассматриваемого варианта применения алгоритм работы и управления будет следующим:

При подаче команды движения вверх или вниз ПЧ выдает команду на отключение тормоза (размораживает механизм), а затем начинает вращение двигателя с минимальной частоты. В процессе работы лебедки можно регулировать скорость вращения и, соответственно, линейную скорость перемещения зацепа с грузом, выбирая оптимальную.

Вернемся к электрической схеме внешних подключений к ПЧ.

Клеммы 1 и 2 имеют фиксированные функции пуска в прямом и обратном направлении вращения соответственно.

После подачи питания на ПЧ вид управления — дистанционный: световые индикаторы УПР и РЕГ светятся. За это состояние отвечают параметры b1-02 и b1-01 соответственно, т.е. ПЧ уже настроен на внешние команды «ПУСК» и «УПРАВЛЕНИЕ СКОРОСТЬЮ».

Управление тормозом лебедки будет выполнять многофункциональный дискретный выход: клеммы 9-10. К началу вращения, после подачи команды «ПУСК», контакты внутреннего реле замыкают клеммы 9-10 и обеспечивают подачу сигнала управления тормозной системой лебедки. Такой режим обеспечивает функция дискретного выхода «Во время вращения».

В сочетании с режимом торможения постоянным током при пуске можно создать момент на валу двигателя при минимальной выходной частоте, при котором не будет срыва управления, и динамические нагрузки будут минимальными.

Процесс торможения постоянным током при пуске определяется параметрами:

  • В2-01 — частота включения постоянного тока торможения.
  • В2-02 — уровень тока торможения.
  • В2-03 — время торможения постоянным током при пуске.

При подаче команды «ПУСК» включается торможение двигателя постоянным током, но тормоз еще не отключен. В течение времени торможения происходит предварительное намагничивание двигателя, и к моменту отключения тормоза на его валу уже создан начальный момент. Это поясняют следующие временные диаграммы:

При опускании груза направление вращения вала двигателя совпадает с направлением вектора силы, которая определяется массой груза, и эта сила пытается увеличить скорость вращения вала двигателя. Таким образом, двигатель переходит в генераторный режим работы.

ЭДС, которая вырабатывается двигателем в таком режиме, поступает в ПЧ, повышая напряжение на звене постоянного тока. Чтобы исключить аварийные остановки привода из-за перегрузки по напряжению, предусмотрен тормозной резистор. Он подключается к звену постоянного тока, когда напряжение ЗПТ достигает критического значения и рассеивает в тепло излишек электроэнергии.

Обобщая вышесказанное, можно составить минимальный список параметров с конкретными значениями для программирования режимов работы и управления ЧРП грузовой лебедки:

  • А1-03=2220,
  • А1-02=2,
  • А1-01=4,
  • В2-01=0,5,
  • В2-02=50.0,
  • В2-03=1.0,
  • Н2-01=37.

Рассмотренный пример ЧРП грузовой лебедки с применением ПЧ «Веспер» серии EI-9011 можно использовать как базовый — для проектирования более сложных механизмов подъема, с улучшенными эксплуатационными характеристиками.

Дополнительные функции управления динамикой авто

Помимо основных функций, предназначенных для управления динамикой автомобиля, есть и более скрытые функции. В отличие от других активных систем безопасности VDIM не столь навязчивая и действует только в крайнем случае. Ко всему, современные механизмы управления динамикой автомобиля могут подстраиваться под стиль езды водителя. Блок управления оптимизирует, и анализируем параметры, в последующем подстраивая рулевое управление, подвеску и другие системы. Одни делает более пассивными и снижает их показатели к минимально допустимым, другие же системы делает более активными, тем самым приводя их реакцию до максимальной отметки.

Инженеры разработали её таким образом, что VDIM может иметь доступ к любым системам безопасности, тем самым самостоятельно решать последующие, возможные варианты происходящей ситуации. Другими словами, механизм VDIM имеет что-то подобно искусственному интеллекту. Механизм может активизироваться за долго до наступления максимальных технических возможностей автомобиля, тем самым сохранив вашу жизнь и избежать ДТП.

[/b][b]Видео-обзор принцип работы системы VDIM:

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector