Ecoparcovka.ru

ЭкоПарковка СТО
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Блок управления 3 фазным двигателем схема

В этой статье описывается, как управлять трехфазным бесщеточным двигателем постоянного тока с использованием GreenPAK.

Бесщеточные электродвигатели постоянного тока (BLDC), также известные как электронно-коммутируемые двигатели (ECM, EC двигатели) или синхронные двигатели постоянного тока, являются синхронными двигателями, питаемыми от постоянного тока через инвертор или импульсный источник питания, который производит электрический ток переменного тока для управления каждой фазой двигателя через контроллер замкнутого контура. Контроллер обеспечивает импульсы тока к обмоткам двигателя, которые управляют скоростью и крутящим моментом двигателя.

Преимущества бесколлекторного двигателя на щетковом двигателе — это отношение высокой мощности к весу, высокая скорость и электронное управление. Бесщеточные двигатели находят применение в таких местах, как компьютерная периферия (дисковые накопители, принтеры), ручные электроинструменты и транспортные средства, которые варьируются от моделей самолетов до автомобилей.

Принцип построения и эксплуатации

Конструкция и работа двигателя BLDC очень похожи на асинхронные двигатели переменного тока и моторы постоянного тока. Как и все другие двигатели, двигатели BLDC также состоят из ротора и статора, что видно на рисунке 1.

Рисунок 1. Конструкция двигателя BLDC

Статор двигателя BLDC изготовлен из многослойной стали, сложенной для переноса обмоток. Обмотки в статоре могут быть расположены в двух шаблонах: звездный рисунок (Y) или дельта-шаблон (Δ). Основное различие между двумя шаблонами заключается в том, что Y-образная диаграмма дает высокий крутящий момент при низких оборотах, а диаграмма Δ дает низкий крутящий момент при малой скорости вращения. Это связано с тем, что в конфигурации Δ половина напряжения подается на обмотку, которая не приводится в движение, что увеличивает потери и, в свою очередь, эффективность и крутящий момент. Двигатели BLDC управляются с использованием электрических циклов. Один электрический цикл имеет 6 состояний. На фиг. 2 показана последовательность коммутации двигателя на основе датчика Холла.

Рисунок 2. Временная диаграмма последовательности коммутации двигателя на датчике Холла

Основополагающие принципы работы двигателя BLDC такие же, как и с мотором постоянного тока. В случае мостового двигателя постоянного тока обратная связь реализуется с использованием механического коммутатора и щетки. В двигателе BLDC обратная связь достигается за счет использования нескольких датчиков обратной связи. Наиболее часто используемые датчики — датчики Холла и оптические датчики.

В трехфазном BLDC количество зубьев (полюсов) кратно 3, а количество магнитов кратно 2. В зависимости от количества магнитов и зубьев каждый двигатель имеет различное количество зубцов (т.е. магнитные аттракционы между роторы и статоры), шаг за ход. Чтобы вычислить количество шагов (N), нам нужно знать, сколько зубов и сколько магнитов используется в двигателе. Мотор, используемый в этой заявке, имеет 12 зубьев (полюсов) и 16 магнитов.

Итак, чтобы сделать 1 оборот, нам нужно сгенерировать 48 электрических шагов.

Проектирование трехфазного бесщеточного двигателя постоянного тока

Основная блок-схема и типичная схема приложения показаны на рис. 3 и рис. 4 соответственно.

Рисунок 3. Блок-схема

Рисунок 4. Типичная схема приложения

Эта конструкция имеет 2 входа для управления скоростью и направлением двигателя. PIN № 8 контролирует направление; уровень HIGH на выводе № 8 показывает, что вращение двигателя по часовой стрелке, а уровень LOW указывает, что он против часовой стрелки. PIN № 2 используется для управления скоростью через входную частоту. Отсутствие сигнала частоты на этом контакте отключит драйвер, и двигатель остановится. Применяя частоту к этому выводу, он запустит двигатель в течение первых 500 мс. Использование входной частоты позволяет очень точно контролировать скорость двигателя. Для расчета RPM нам нужно знать, сколько электрических шагов содержит мотор:

Двигатель в этом приложении имеет 48 шагов, поэтому на частоте 5 кГц двигатель будет работать со скоростью 6250 об / мин.

Конструкцию можно разделить на 4 части (рисунок 5): блок обработки датчиков Холла, блок управления затвором, блок управления PWM или блок управления скоростью и блок защиты.

Рисунок 5. Дизайн

Блок обработки датчиков Холла включает в себя ACMP (ACMP0, ACMP3, ACMP4), фильтры деформирования (DLY1, DLY5, DLY6) и DFF (DFF6, DFF7, DFF8). Датчики Холла, используемые в этом проекте, имеют 4 контакта; VDD, GND и 2 дифференциальных выхода, которые подключены к входам IN + и IN для ACMP. Внутренний компонент Vref, установленный в 1, 2 В, используется как VDD для датчиков Холла. Отфильтрованные сигналы от ACMP поступают в D-входы DFF. Входная частота синхронизирует эти DFF и устанавливает скорость вращения. Сигналы от этих DFF переходят к драйверу ворот и 3-бит LUT14, который настроен как XNOR. Результат состоит в том, что выход чередуется на уровень каждый раз, когда любой датчик Холла меняет свою полярность. Оба краевых детектора генерируют фактическую частоту частоты (частота Холла), которая сравнивается с входной частотой для генерации сигнала ШИМ для управления скоростью вращения.

Блок драйвера ворот включает 12 3-битных LUT, которые коммутируют внешние транзисторы в зависимости от обратной связи датчиков Холла. 6 для LUT (3-бит LUT8 — 3-бит LUT13) используются для направления CW, а для переключения в направлении CCW используются еще 6 (3-бит LUT1 — 3-бит LUT6). Этот блок также включает 3 2-битных LUT (2-бит LUT4, 2-бит LUT5 и 2-бит LUT6) для смешивания сигналов для PMOS-транзисторов каждой фазы с PWM, чтобы гарантировать, что скорость вращения не зависит от нагрузки.

Контроллер PWM включает в себя компонент PWM2, счетчик CNT8, конечный автомат FSM1, 3-бит LUT15, 2 DFF (DFF0 и DFF1), детектор переднего фронта PDLY0 и инвертор INV0. DFF0 и DFF1 вместе работают как частотный компаратор; Выход DFF0 nQ выходит за пределы LOW, когда входная частота выше, чем частота Холла, а выход DFF1 nQ выходит за пределы LOW, когда входная частота ниже частоты Холла.

На уровне LOW на входе «+» выход PWM2 OUT + генерирует сигнал ШИМ с рабочим циклом, который колеблется от 256/256 до 1/256. На уровне LOW на входе «-» PWM2 OUT + генерирует PWM с изменяющимся рабочим циклом от 1/256 до 256/256. Частота ШИМ составляет

Читать еще:  Шаговый двигатель 4 вывода схема подключения

100 кГц, а рабочий цикл IC установлен на 0% при запуске.

Двигатель останавливается до тех пор, пока не будет применена входная частота до PIN2. После подачи частоты на PIN2 выход DFF0 nQ будет гореть LOW, а PWM увеличит рабочий цикл от 0 до 99, 6%. Двигатель будет продолжать вращаться, пока датчики Холла превысят входную частоту. На этом этапе вывод DFF0 nQ будет ВЫСОКИЙ, и выход DFF1 nQ будет гореть LOW. Эта инверсия приводит к тому, что рабочий цикл PWM уменьшается до приемлемого значения при непосредственном VDD и нагрузке, наблюдаемой на двигателе. Эта система будет постоянно работать, чтобы сбалансировать рабочий цикл ШИМ. Функциональность FSM1, CNT8, 3-бит LUT15 и PWM2 описана более подробно в примечании к применению AN-1052.

Защитный блок включает в себя 2 задержки (DLY2 и DLY9), счетчик CNT0 и 2-бит LUT0, сконфигурированный как вентиль XOR. Эта часть конструкции используется для защиты от выгорания двигателя и внешних полевых транзисторов. Если двигатель застревает или не может запуститься, датчики Холла не смогут дать обратную связь, необходимую для выключения двигателя. Если после 100 мс DLY2 выход не поступит, то обратный сигнал LOW и 2-бит LUT0 отключит двигатель. Если это происходит, CNT0 и DLY9 пытаются запустить двигатель каждые 500 мс в течение 8 мс. Этот период достаточен для запуска двигателя, но он недостаточно длинный, чтобы вызвать повреждение двигателя.

Рисунок 6. Объем работы двигателя BLDC

Вывод

В этой статье показано, как пользователи могут управлять трехфазным бесщеточным двигателем постоянного тока с использованием SLG46620 GreenPAK CMIC и датчиков эффекта Холла. SLG46620 также содержит другие функции, которые могут быть использованы для этого проекта. Например, АЦП внутри GreenPAK может интерпретировать входное напряжение постоянного тока и генерировать импульс ШИМ от значения, а не использовать входную частоту.

Раньше, если разработчик хотел бы управлять двигателем BLDC, они были бы ограничены как электрическими характеристиками, так и функциями выделенных готовых решений IC. Это вынудило дизайнеров выбирать фиксированную функцию и потенциально избыточное или дорогостоящее решение, которое часто ограничивало бы IO своей системы.

Диалог GreenPAK отменяет этот процесс проектирования, возвращая конфигурацию обратно в руки дизайнера. Используя это приложение GreenPAK как универсально-применимую (и настраиваемую) трехфазную схему управления двигателем BLDC, дизайнер может выбрать распиновку и внешние полевые транзисторы, которые отвечают уникальным электрическим характеристикам своего проекта. Кроме того, даже учитывая внешние полевые транзисторы, решение Dialog GreenPAK по-прежнему достаточно мало, чтобы дизайн системы и стоимость спецификации были чрезвычайно конкурентоспособными по сравнению с выделенными ИС.

Рекомендации

Для соответствующих документов и программного обеспечения вы можете посетить страницу Гринпака.

Загрузите бесплатное программное обеспечение GreenPAK Designer (1), чтобы открыть .gp-файлы (2) и просмотреть предлагаемый дизайн схемы. Используйте инструменты разработки GreenPAK (3), чтобы заморозить дизайн в индивидуальную микросхему за считанные минуты. Dialog Semiconductor предоставляет полную библиотеку примечаний к приложениям (4) с примерами дизайна, а также объяснения функций и блоков в IC Dialog.

(1) Программное обеспечение GreenPAK Designer, Загрузка программного обеспечения и руководство пользователя

(2) .gp, файл дизайна GreenPAK (загрузка файла zip)

(3) Инструменты разработки GreenPAK

(4) Замечания по применению GreenPAK

Отраслевые статьи — это форма контента, которая позволяет отраслевым партнерам делиться полезными новостями, сообщениями и технологиями с читателями All About Circuits таким образом, что редакционный контент не очень подходит. Все отраслевые статьи подчиняются строгим редакционным правилам с целью предоставления читателям полезных новостей, технических знаний или историй. Точки зрения и мнения, выраженные в отраслевых статьях, являются точками партнера, а не обязательно для All About Circuits или его авторов.

Частотные преобразователи. Работа и устройство. Типы и применение

Ротор электродвигателя начинает свое вращение с помощью электромагнитных сил от вращающегося магнитного поля, вызванного обмоткой якоря. Число оборотов определяется частотой тока в сети. Стандартное значение частоты тока составляет 50 герц. Это означает, что 50 периодов колебаний совершается за 1 секунду. В минуту число колебаний составит 50 х 60 = 3000. Значит, ротор будет вращаться 3000 оборотов в минуту.

Если научиться изменять частоту тока, то появится возможность регулировки скорости двигателя. Именно по этому принципу действуют частотные преобразователи.

Современное исполнение преобразователей частоты выглядит в виде высокотехнологичного устройства, состоящего из полупроводниковых приборов, совместно с микроконтроллером электронной системы. С помощью этой системы управления изменяются важные параметры электродвигателя, например, число оборотов.

Изменить скорость привода можно и с помощью механического редуктора шестеренчатого типа, либо на основе вариатора. Но такие механизмы имеют громоздкую конструкцию, их нужно обслуживать. С использованием частотника (инвертора) снижается расход на техническое обслуживание, повышается функциональность привода механизма.

По конструктивным особенностям частотные преобразователи делятся:

  • Индукционные.
  • Электронные.

Электродвигатели асинхронного типа с фазным ротором, подключенные в режим генератора, представляют подобие индукционного частотного преобразователя. Они имеют малые КПД и эффективность. В связи с этим такие виды преобразователей не нашли популярности в использовании.

Электронные виды частотников дают возможность плавного изменения оборотов электродвигателей.

При этом реализуются два возможных принципа управления:

  1. По определенной зависимости скорости от частоты тока.
  2. По способу векторного управления.

Первый принцип самый простой, но не совершенный. Второй принцип применяется для точного изменения оборотов двигателя.

Конструктивные особенности

Рис. 1

Частотные преобразователи имеют в составе основные модули:
  • Выпрямитель.
  • Фильтр напряжения.
  • Инверторный узел.
  • Микропроцессорная система.

Все модули связаны между собой. Действие выходного каскада (инвертора) контролирует блок управления, с помощью которого меняются свойства переменного тока. Частотный преобразователь для электромотора имеет свои особенности. В его состав входит несколько защит, управление которыми осуществляется микроконтроллером. Например, проверяется температура полупроводников, работает защита от превышения тока и короткого замыкания. Частотник подключается к сети питания через устройства защиты. Для запуска электродвигателя не нужен магнитный пускатель.

Читать еще:  Шкода октавия датчик температуры двигателя akl
Выпрямитель

Это первый модуль, по которому проходит ток. Он преобразует переменный ток в постоянный, благодаря полупроводниковым диодам. Особенностью частотника является возможность его питания от однофазной сети. Разница в конструкции состоит в разных типах выпрямителей.

Если мы говорим про однофазный частотник для двигателя, то нужно использовать в выпрямителе четыре диода по мостовой схеме. При трехфазном питании выбирается схема из шести диодов. В итоге получается выпрямление переменного тока, появляется два полюса: плюс и минус.

Фильтр напряжения

Из выпрямителя выходит постоянное напряжение, которое имеет значительные пульсации, заимствованные от переменного тока. Для их сглаживания используют такие элементы, как электролитический конденсатор и катушка индуктивности.

Катушка имеет много витков, и обладает реактивным сопротивлением. Это дает возможность сглаживать импульсы тока. Конденсатор, подключенный к двум полюсам, имеет интересные характеристики. При прохождении постоянного тока он в силу закона Киргофа должен быть заменен обрывом, как будто между полюсами ничего нет. При прохождении переменного тока он должен быть проводником, то есть, не иметь сопротивления. В результате доля переменного тока замыкается и исчезает.

Инверторный модуль

Это узел, имеющий наибольшую важность в преобразователе частоты. Он изменяет параметры тока выхода, состоит из шести транзисторов. Для каждой фазы подключены по два транзистора. В каскаде инвертора применяются современные транзисторы IGBT.

Если изготавливать частотные преобразователи своими руками, то необходимо выбирать элементы конструкции, исходя из мощности потребления. Поэтому нужно сразу определить тип электродвигателя, который будет питаться от частотника.

Микропроцессорная система

В самодельной конструкции не получится добиться таких параметров, имеющихся у заводских моделей, так как в домашних условиях сделать управляющий модуль сложно. Дело не в пайке деталей, а в создании программы для микроконтроллера. Простой способ – это сделать управляющий блок, которым можно регулировать обороты двигателя, осуществлять реверс, защищать двигатель от перегрева и перегрузки по току.

Чтобы изменить обороты мотора, нужно применить переменное сопротивление, подключенное к вводу микроконтроллера. Это устройство подает сигнал на микросхему, которая производит анализ изменения напряжения и сравнивает его с эталоном (5 вольт). Система действует по алгоритму, который создается до начала создания программы. По нему действует микропроцессорная система.

Приобрели большую популярность управляющие модули Siemens. Частотные преобразователи этой фирмы надежны, могут применяться для любых электродвигателей.

Принцип действия

Основа работы инвертора состоит в двойном изменении формы электрического тока.

Напряжение подается на блок выпрямления с мощными диодами. Они удаляют гармонические колебания, однако оставляют импульсы сигнала. Чтобы их удалить, подключен конденсатор с катушкой индуктивности, образующие фильтр, который стабилизирует форму напряжения.

Далее, сигнал идет на частотный преобразователь. Он состоит из шести мощных транзисторов с диодами, защищающими от пробоя напряжения. Ранее для таких целей применялись тиристоры, но они не обладали таким быстродействием, и создавали помехи.

Чтобы подключить режим замедления мотора, в схему устанавливают транзистор управления с резистором, который рассеивает энергию. Такой способ дает возможность удалять образуемое двигателем напряжение, чтобы защитить емкости фильтра от выхода из строя вследствие перезарядки.

Метод управления векторного типа частотой инвертора дает возможность создания схемы, которая автоматически регулирует сигнал. Для этого применяется управляющая система:
  • Амплитудная.
  • Широтно-импульсная.

Амплитудная регулировка работает на изменении напряжения входа, а ШИМ – порядка действия переключений транзисторов при постоянном напряжении на входе.

При регулировании ШИМ образуется период модуляции, когда обмотка якоря подключается по очереди к выводам выпрямителя. Так как тактовая частота генератора высокая и находится в интервале 2-15 килогерц, то в обмотке мотора, имеющего индуктивность, осуществляется сглаживание напряжения до нормальной синусоиды.

Принцип подключения ключей на транзисторах

Каждый из транзисторов включается по встречно-параллельной схеме к диоду (Рис. 1). Через цепь транзистора протекает активный ток электродвигателя, реактивная часть поступает на диоды.

Чтобы исключить влияние помех на действие инвертора и электродвигателя, в схему подключают фильтр, который удаляет:
  • Радиопомехи.
  • Помехи от электрооборудования.

Об их образовании дает сигнал контроллер, чтобы снизить помехи, применяются экранированные провода от двигателя до выхода инвертора.

Чтобы оптимизировать точность функционирования асинхронных двигателей, в цепь управления инверторов подключают:
  • Ввод связи.
  • Контроллер.
  • Карта памяти.
  • Программа.
  • Дисплей.
  • Тормозной прерыватель с фильтром.
  • Охлаждение схемы вентилятором.
  • Прогрев двигателя.
Схемы подключения

Частотные преобразователи служат для работы в 1-фазных и 3-фазных сетях. Но если имеются промышленные источники питания на 220 вольт постоянного тока, то инверторы также можно подключать к ним.

Частотные преобразователи для 3-фазной сети рассчитаны на 380 вольт, их подают на мотор. 1-фазные частотники работают от сети 220 вольт, выдают на выходе 3 фазы. Частотник может подключаться к электродвигателю по схеме звезды или треугольника.

Обмотки мотора соединяются в «звезду» для частотника, работающего от трех фаз 380 вольт.

Обмотки двигателя соединяют «треугольником», когда инвертор запитан от 1-фазной сети.

При выборе метода подключения электродвигателя к частотнику необходимо определить мощности, которые создает двигатель на разных режимах, в том числе и медленный режим, тяжелый запуск. Преобразователь частоты нельзя эксплуатировать с перегрузкой длительное время. Его мощность должна быть с запасом, тогда работа будет без аварий, и срок службы продлится.

Шкафы управления электродвигателями с фазным ротором серии ШУ УПТФ

Преобразователь серии ШУ УПТФ является цифровым комплектным пусковым устройством, предназначенным для плавного пуска низковольтных и высоковольтных асинхронных электродвигателей с фазным регулированием по цепи ротора для приводов конвейеров, мельниц, дробилок, дымососов, вентиляторов, насосов и других производственных механизмов.

ШУ УПТФ путем введения сопротивления в цепь ротора ограничивает пусковой ток двигателя и увеличивает пусковой момент, чем при полностью закороченном роторе. По мере разгона двигателя и включением соответствующей резистивной ступени достигается оптимальная тахограмма пуска двигателя. Переход на соответствующую резистивную ступень выполнен за счет тиристоров. Исключение контакторов в цепи переключения ступеней повышает надежность устройства. При достижении скорости, близкой к номинальной скорости механизма, ШУ УПТФ закорачивает цепь ротора.

Читать еще:  Kia rio лучшее масло для двигателя

Варианты ШУ УПТФ

ШУ УПТФ изготавливаются в двух вариантах – с нерегулируемым и с регулируемым выпрямительным мостом в цепи ротора. Применение регулируемого выпрямительного моста позволяет обеспечить более плавное поддержание момента на валу электродвигателя.

Номинальное напряжение питающей сети собственных нужд – 380В, 50 Гц.

Диапазон номинальных напряжений ротора двигателя – до 1500 В.

Диапазон номинальных токов ротора – до 2000 А.

Функциональные возможности

Цифровая система управления ШУ УПТФ обеспечивает:

  • выбор и хранение до 4-х комплектов параметров с разными настройками на разные двигатели, что дает возможность более гибкой и быстрой настройки преобразователя по заданным требованиям;
  • расширенный набор защит;
  • мониторинг основных параметров;
  • архив последних событий;
  • ввод и визуализация параметров управления посредством сенсорной панели оператора;
  • местное/дистанционное управление преобразователем;
  • обмен данными с АСУ ТП по каналу RS-485 Modbus RTU.

Защиты

ШУ УПТФ имеет следующий набор защит:

  • От неготовности и пропадания питания собственных нужд;
  • От превышения тока ротора;
  • От пробоя тиристоров в выпрямительном мосте;
  • От превышения температуры резисторов ступеней;
  • От превышения температуры тиристоров;
  • От перенапряжения в цепи ротора;
  • От затянутого пуска;
  • От неразворота ротора;
  • Защитное отключение статора при аварийной ситуации в роторе, в том числе при отключении шунтирующего контактора в роторе.

Конструктивное исполнение

Устройство на лицевой панели имеет:

  • сенсорная панель оператора для отображения и настройки основных параметров устройства, индикации аварийных и предупредительных сообщений;
  • Амперметр тока ротора двигателя;
  • Кнопка «Пуск»;
  • Кнопка «Стоп»;
  • Кнопка «Сброс защит»;
  • Кнопка «Аварийный стоп»;
  • Переключатель выбора поста управления «Местн./Дистанц.»
  • Сигнальная лампа состояния сети собственных нужд;
  • Сигнальная лампа состояния статорного выключателя;
  • Сигнальная лампа «Готовность»;
  • Сигнальная лампа «Работа»;
  • Сигнальная лампа «Авария»;
  • Сигнальная лампа «Пуск завершен» (состояние шунтирующего контактора).

По согласованию с Заказчиком возможно изготовление устройств с другим набором органов управления и индикации.

Конструктивно устройство ШУ УПТФ выполнено в виде шкафа одностороннего/двустороннего обслуживания со степенью защиты до IP54 с подводом кабеля снизу.

Комплект поставки

  • шкаф управления ШУ УПТФ;
  • комплект ЗИП;
  • эксплуатационная документация;
  • пульт дистанционного управления*;
  • электродвигатель асинхронный с фазным ротором*

* — не входит в комплект поставки. Поставка осуществляется по заказу.

Условное обозначение

Шкаф управления электродвигателем с фазным ротором

1 – шкаф управления, устройство пусковое тиристорное, для электродвигателей с фазным ротором
2 – количество управляемых от шкафа двигателей
3 – номинальный ток ротора электродвигателя, А
4 – номинальное напряжение ротора электродвигателя, В
5 – климатическое исполнение и категория размещения

Пример условного обозначения шкафа управления электродвигателем с фазным ротором по схеме УПТФ на номинальный ток ротора 400 А, номинальное напряжение ротора – 900 В:

Шкаф управления электродвигателем с фазным ротором ШУ УПТФ-1-400-900-УХЛ4 ШЕДК.650300.001ТУ

Трехфазный регулятор мощности своими руками.

(данный раздел статьи будет дополняться по мере изготовления 3-фазного регулятора)

Что-же, давайте перейдем от теории к практике и соберем такой регулятор. Он будет использоваться для автоматического управления температурой в печи отжига отливок. В литейном цеху.

Условно трехфазный регулятор можно изобразить так:

Модуль синхронизации — три трансформатора для синхронизации по 3-м фазам.

Плата регулятора — схема трехфазного регулятора представлена выше, печатная плата показана ниже)

Модуль согласования. Разные типы тиристоров требуют разных по форме импульсов открытия. В модуле согласования мы настраиваем ширину и амплитуду импульса в зависимости от выбранных тиристоров.

Делаем печатную плату

так выглядит наша готовая плата регулятора

Теперь собираем синхронизацию. В данном случае будет использован трехфазный тиристорно-диодный выпрямитель без понижающего трансформатора. Поэтому схему синхронизации подключаем так:

Схема платы согласования выглядит следующим образом:

Показан только один канал. Нужно собрать таких три.

Все регулятор готов. Подключаем его к трехфазному выпрямителю, а на вход задания подаем сигнал 0-10В температурного контроллера. (или потенциометра, для ручного управления).

Подытожим. Если у вас есть трехфазная установка, печь, нагреватель, да что угодно, любой потребитель мощности с максимальным потребляемым током до 2500 А. Можете смело использовать такой трехфазный регулятор мощности. Подобрав при этом трансформатор в зависимости от потребляемой мощности вашей установки. Или подключить регулятор напрямую от питающей трехфазной сети без использования понижающего трансформатора. Данный трехфазный регулятор мощности испытан и отлично себя зарекомендовал на более чем 10-ти печах мощностью до 300 000 W (срок эксплуатации уже более 6 лет).

Купить такой 3-х фазный регулятор можно по ссылке.

Если вы хотите собрать трехфазный регулятор мощности своими руками, напишите в комментариях, дам необходимую информацию.

Эндоскоп с Aliexpress. Обзор, примеры фото и видео.

on 23 августа, 2019 by admin

Эндоскоп представляет из себя шнур диаметром 5мм , на конце которого размещена видеокамера со светодиодной п�…

Как летнюю жару превратить в тепло зимой. Автономное отопление на солнечных батареях.

on 16 апреля, 2019 by admin

В этом материале постараемся теоретически решить задачу автономное отопление на солнечных батареях. Посчит�…

Трехфазный регулятор мощности на тиристорах

on 22 марта, 2019 by admin

Данный трехфазный регулятор мощности был разработан для управления током нагревателя в вакуумной печи 150…

Садовый пруд на солнечных батареях. Биоплато, экопруд.

on 24 января, 2019 by admin

Чтобы очистить садовый пруд нужно организовать биоплато. Чем больше солнца тем больший объем воды солнечные …

Можно ли заряжать литиевые аккумуляторы напрямую от солнечных батарей

on 27 сентября, 2018 by admin

Возможно ли использовать солнечную панель как зарядное для литиевых аккумуляторов li ion типа 18650. Мы решили…

Aiek M-5 телефон-кредитка. Обзор

on 31 июля, 2018 by admin

Aiek M5 из магазина AliExpress. Начну с главного. Телефончик действительно хорош, вызывает много положительных эмоци�…

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector