Ecoparcovka.ru

ЭкоПарковка СТО
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Ардуино контроль температуры и управление двигателем

Arduino для начинающих. Урок 9. Подключение датчика температуры и влажности DHT11 и DHT22

Продолжаем серию уроков “Arduino для начинающих”. Сегодня мы разберем подключение к Arduino датчиков температуры и влажности DHT11 и DHT22.

Датчики DHT11 и DHT22 не обладают высоким быстродействием и точностью, но зато просты, недороги и отлично подходят для обучения. Они выполнены из двух частей — емкостного датчика влажности и термистора. Чип, находящийся внутри, выполняет аналого-цифровое преобразование и выдает цифровой сигнал, который можно считать с помощью любого микроконтроллера.

Характеристики и подключение датчиков DHT11 и DHT22

Датчик состоит из двух частей – емкостного датчика температуры и гигрометра. Первый используется для измерения температуры, второй – для влажности воздуха. Находящийся внутри чип может выполнять аналого-цифровые преобразования и выдавать цифровой сигнал, который считывается посредством микроконтроллера.

В большинстве случаев DHT11 или DHT22 доступен в двух вариантах: как отдельный датчик в виде пластикового корпуса с металлическими контактами или как готовый модуль с датчиком и припаянными элементами обвязки. Второй вариант гораздо проще использовать в реальных проектах и крайне рекомендуется для начинающих.

Датчик DHT11

  • Потребляемый ток – 2,5 мА (максимальное значение при преобразовании данных);
  • Измеряет влажность в диапазоне от 20% до 80%. Погрешность может составлять до 5%;
  • Применяется при измерении температуры в интервале от 0 до 50 градусов (точность – 2%)
  • Габаритные размеры: 15,5 мм длина; 12 мм широта; 5,5 мм высота;
  • Питание – от 3 до 5 Вольт;
  • Одно измерение в единицу времени (секунду). То есть, частота составляет 1 Гц;
  • 4 коннектора. Между соседними расстояние в 0,1 ”.

Датчик DHT22

  • Питание – от 3 до 5 Вольт;
  • Максимальный ток при преобразовании – 2,5 мА;
  • Способен измерять влажность в интервале от 0% до 100%. Точность измерений колеблется от 2% до 5%;
  • Минимальная измеряемая температура – минус 40, максимальная – 125 градусов по Цельсию (точность измерений – 0,5);
  • Устройство способно совершать одно измерение за 2 секунд. Частота – до 0,5 ГЦ;
  • Габаритные размеры: 15,1 мм длина; 25 мм широта; 5,5 мм высота;
  • Присутствует 4 коннектора. Расстояние между соседними – 0,1 ‘;

Очевидно, что при использовании в ардуино датчика температуры и влажности DHT11 устройство выдаст менее точные значения, чем DHT22. У аналога больший диапазон измеряемых значений, но и цена соответствующая. Датчик температуры и влажности DHT22, как и его аналог, имеет один цифровой выход, соответственно снимать показания можно не чаще, чем один раз в 1-2 секунды.

Принцип работы H-моста

Перед тем, как переходить непосредственно к управлению двигателем, обсудим что такое H-BRIDGE (H-мост). Собранная нами далее схема будет осуществлять две функции: управлять двигателем постоянного тока с помощью управляющих сигналов малой мощности и изменять направление вращения двигателя.

Нам известно, что для изменения направления вращения двигателя постоянного тока необходимо изменить полярность приложенного к нему питающего напряжения. И как раз для смены полярности напряжения хорошо подходит устройство, называемое H-мостом. На представленном выше рисунке мы имеем 4 выключателя. Как показано на рисунке 2 если выключатели A1 и A2 замкнуты, то ток через двигатель течет справа налево как показано на второй части рисунка 2 – то есть в этом случае двигатель будет вращаться по часовой стрелке. А если выключатели A1 и A2 разомкнуты, а B1 и B2 – замкнуты, то ток через двигатель в этом случае будет протекать слева направо как показано на второй части рисунка, то есть двигатель будет вращаться против часовой стрелки. В этом и заключается принцип работы H-моста.

Читать еще:  Шевроле ланос плавают обороты на горячем двигателе

Рисунок 2 (часть 1)

Рисунок 2 (часть 2)

Мы в качестве H-моста будем использовать специализированную микросхему L293D, которую еще называют драйвером двигателей. Эта микросхема предназначена для управления двигателями постоянного тока малой мощности (см. рисунок) и содержит в своем составе два H-моста, то есть с ее помощью можно управлять двумя двигателями. Эта микросхема часто используется для управления двигателями в различных роботах.

В следующей таблице указаны необходимые значения напряжений на выводах INPUT1 и INPUT2 микросхемы L293D для смены направления вращения двигателя.

Enable PinInput Pin 1Input Pin 2Motor Direction
HighLowHighвправо
HighHighLowвлево
HighLowLowстоп
HighHighHighстоп

То есть, чтобы двигатель вращался по часовой стрелке необходимо чтобы на 2A было напряжение высокого уровня (high), а на контакте 1A – напряжение низкого уровня (low). Аналогично для вращения двигателя против часовой стрелки необходимо обеспечить на 1A напряжение высокого уровня, а на 2A – низкого.

Как показано на следующем рисунке Arduino UNO имеет 6 ШИМ каналов (обозначенных на плате специальным знаком – тильдой), любой из которых мы можем использовать для получения изменяющего напряжения (на основе ШИМ). В данном проекте мы будем использовать в качестве ШИМ выхода контакт PIN3 Arduino UNO.

arduinoLab

Применение термостата с ПИД управлением не ограничено птицеводством, КО , проект может использоваться пивоварами для поддержания температуры сусла, винокурами в перегонных аппаратах, может просто греть воду в бойлере до приятной температуры, после небольших изменений, в самодельных паяльных станциях, муфельных печах, кароче везде где требуется контроль температуры с высокой точность. Принцип работы и отличие от банального термостата с гистерезисом показан в видео:

Ниже схемы подключения и исходные коды проекта.

О датчиках температуры:

Исходные коды проекта написаны нескольких типов датчиков:

  • TMP102 — датчик температуры с интерфейсом I2C, подробнее про работу с датчиком написано тут. Возможно датчик потребует корректировку температуры.
  • LM35 — не дорогой и распространенный, достаточно точный аналоговый датчик температуры, подробнее про него тут.
  • MCP9808 — высокоточный датчик температуры с интерфейсом I2C. Оптимальный выбор.

Имея навыки программирования ардуино, изменить код под другие датчики температуры труда не составит.

О ЖКИ индикаторе:

Решил не усложнять и взял стандартный текстовый экран WH1602A, про подключение подобных экранов к ардуино уже написано тут. Подключается напрямую, без переходников на I2C. Указанные в проекте номера выходов для подключения ЖКИ совпадают с китайским LCD Keypad Shield, я его использовал на стадии отладки.

Органы управления:

Настройка температуры терморегулятора осуществляется с помощью энкодера, удобно использовать модуль KY-040 по китайской номенклатуре

О реле:

В регуляторе крайне не рекомендуется использовать электромеханические реле, от частого переключения они выйдут из строя, особенно это относится к китайским релейным модулям за пару долларов.

Правильным решением будет использование твердотельного реле, либо модуль с симистором (что по сути является одним и тем же) на необходимый ток. Например SSR-25DA на 25А, если мощность нагревателя в районе нескольких киловатт, OMRON G3MB 202P держит до 2А или 440Вт.

У меня они в наличии не оказались, пришлось закупить в местном магазине радиодеталей оптосимистор MOC3063 для гальванической развязки и «детекции нуля» с симистором BT137x-800 на 8А и собирать твердотельное реле на макетке. Схема взята из даташита на MOC3063.

Читать еще:  Что плохого в gdi двигателях

Схема подключения:

Возможно на этой будет понятней.

Схема подключения актуальная для датчиков с интерфейсом I2C (MCP9808, TMP102), в случаи использования аналогового LM35, его выход подключается к аналоговому входу А5.

Готовые модули на L298

В интернете можно заказать готовый модуль на L298, правда в нем будет 6 входов для управления.

Рис. 6. Готовые модули на L298.

Я для своих нужд приобрел готовый модуль по типу как на рисунке слева. В нем присутствует микросхема L298 и небольшой стабилизатор для подачи +5В на логику микросхемы.

Для подключения данной платки важно четко уяснить одну особенность:

  • Если для питания двигателей используется напряжение более чем 12В то перемычку нужно убрать и подавать отдельно 5В на выделенный для этого коннектор
  • Если питание двигателей будет осуществляться от напряжения 5-12В то перемычку нужно утсановить и дополнительное питание 5В не понадобится.

Если же подать на двигатели, например 20В и оставить перемычку установленной, то на модуле выгорит микросхемка-стабилизатор на 5В. Почему разработчики не установили интегральный стабилизатор с более широким диапазоном входных напряжений — не понятно.

Для того чтобы сэкономить два входа при подключении такого блока к Arduino или Raspberry Pi можно добавить часть схемы на CD4001, как на рисунке 5.

Контроль скорости двигателя

Ниже приведена принципиальная схема двигателя постоянного тока, подключенного к плате Arduino.

Arduino Code

Код для заметки

Транзистор действует как переключатель, управляющий мощностью двигателя. Контакт 3 Arduino используется для включения и выключения транзистора, и на эскизе ему присваивается название «motorPin».

Когда программа запускается, она предлагает вам ввести значения для управления скоростью двигателя. Вам необходимо ввести значение от 0 до 255 в Serial Monitor.

В функции «loop» команда «Serial.parseInt» используется для считывания числа, введенного в виде текста в Serial Monitor, и преобразования его в «int». Вы можете ввести любой номер здесь. Оператор ‘if’ в следующей строке просто выполняет аналоговую запись с этим номером, если число находится в диапазоне от 0 до 255.

Результат

Двигатель постоянного тока будет вращаться с различными скоростями в соответствии со значением (от 0 до 250), полученным через последовательный порт.

Выводы

Микросхема Dallas DS18B20 является очень интересным устройством. Датчики температуры и термометры, созданные на ее основе, обладают приемлемыми для большинства задач характеристиками, развитым функционалом, относительно не дороги. Особенную популярность датчик DS18B20 снискал как влагозащищенное устройство для измерения температуры жидкостей.

За дополнительные возможности приходится платить относительной сложностью работы с датчиком. Для подключения DS18B20 нам обязательно понадобится резистор с номиналом около 5К. Для работы с датчиком в скетчах ардуино нужно установить дополнительную библиотеку и получить определенные навыки для работы с ней – там все не совсем тривиально. Впрочем, можно купить уже готовый модуль, а для скетча в большинстве случаев хватит простых примеров, приведенных в этой статье.

Общие сведения о драйвере MX1508.

Основной чип модуля — это микросхема MX1508, состоящая из двух H-мостов (H-Bridge), один для выхода A, второй для выхода B, каждый канал рассчитан на 0,8 А с пиком 2,5 А. H-мост широко используется в электронике и служит для изменения вращения двигателя, схема H-моста содержит четыре транзистора (ключа) с двигателем в центре, образуя H-подобную компоновку. Принцип работы прост, при одновременном закрытии двух отдельных транзисторов, изменяется полярность напряжения, приложенного к двигателю. Это позволяет изменять направление вращения двигателя. На рисунке ниже, показана работа H-мостовой схемы.

Читать еще:  Что сделать из двигателя от лобзика

Управлять двигателем можно низковольтным напряжением, ниже, чем напряжение на плате Arduino. Для управления скоростью используется широтно-импульсная модуляция (PWM).

Модуль MX1508 содержит разъем для подключения питания, два выхода A и B, и разъем управления, с назначением каждого можно ознакомиться ниже:

  • Вывод «+» и «-» — питание модуля и двигателей, от 2 до 9,6 В;
  • Выводы A1 и A2 — используются для управления направлением вращения двигателя A;
  • Выводы B1 и B2 — используются для управления направлением вращения двигателя B;
  • Выходы MOTOR A — разъем для двигателя A;
  • Выходы MOTOR B — разъем для двигателя B;

Подключение MX1508 к Arduino (коллекторный двигатель).

Необходимые детали:

  • Arduino UNO.
  • Драйвер мотора на MX1508.
  • Коллекторный двигатель.

Схема подключения MX1508 к Arduino, и коллекторного двигателя к MX1508.

Первым делом, необходимо подключить источник питания от 2 до 9,6 B к модулю (в примере используется 5 В. от Arduino). Далее, подключаем управляющие провода A1, A2, B1, B2 (встречается маркировка, как на L298: IN1, IN2, IN3, IN1) к цифровым выводам Arduino 10, 11, 5 и 6. Теперь, подключаем двигатели, один к клеммам MOTOR A , а другой к клеммам MOTOR B. Схема подключения приведена ниже.

Теперь подключаем Arduino к компьютеру и загружаем скетч ниже.

Описание скетча:

Скетч простой, не требует дополнительных библиотек. Первым делом, указываем, к каким выводам подключен модуль.

Управление скоростью осуществляется с помощью ШИМ, для удобства используем переменную speed, в которой указываем скорость двигателя. Значение «0» — значит остановка, а «255» равносильно напряжению питания, и двигатели крутятся на максимальной скорости.

Далее, мы указываем, что данные выводы используем как выход.

Направление вращения двигателя осуществляется с помощью выводов A1 и A2 — для первого двигателя, B1 и B2 — для второго двигателя, то есть, если подать на вывод A1 — 0B (LOW), а на A2 — 5B (HIGH), двигатель A будет вращаться вперед (так же и для двигателя B). Для вращения назад, необходимо подать на A1 — 5B (HIGH), а на A2 — 0B (LOW), двигатель A будет вращаться назад (так же и для двигателя B). На основании этого напишем небольшие функции, которые позволят вращать оба двигателя вперед, назад, в противоположном направлении, и останавливать вращение обоих двигателей.

Реализуем вывод в монитор порта информацию о направлении вращения двигателя в данный момент.

Это поможет определить, правильно ли мы всё подключили, или нет. Если двигатели будут вращаться не в том направлении, как выводится в мониторе порта, то необходимо поменять местами провода подключения двигателей, и повторить проверку. Эта информация позволит настроить минимальный код для создания радиоуправляемой машины. Вот такие машинки я делал на Arduino и ESP8266 с использованием драйвера L298:

  • Собираем Arduino машинку на Motor Shield L293D и ИК пульте.
  • Машинка на радиоуправлении. Arduino + nrf24l01 + пульт.
  • Самодельная Wifi машинка на NodeMCU. Машина делает дрифт.

Используя драйвер MX1508, собрать данные проекты не составит труда, так как код из проектов выше совместим с драйвером MX1508.

Появились вопросы или предложения, не стесняйся, пиши в комментарии!

Не забывайте подписываться на канал Youtube и вступайте в группы в Вконтакте и Facebook.

Всем Пока-Пока.

И до встречи в следующем уроке.

Понравилась статья? Поделитесь ею с друзьями:

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector